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Abstract 

Inertial terms dominate the single-gyre ocean model and prevent westem-intensiEcation 
when the viscosity is small. This occurs long before the oceanically-appropriate pa- 
rameter range. It is demonstrated here that the circulation is controlled if a mech- 
anism for ultimate removal of vorticity exists, even if it is active only in a narrow 
region near the boundary. 

Vorticity removal is modeled here as a viscosity enhanced very near the sohd 
boundaries to roughly parameterize missing boundary physics hke topographic in- 
teraction and three dimensional turbulence over the shelf. This boundary-enhanced 
viscosity allows western-intensified mean flows even when the inertial boundary width 
is much wider than the frictional region because eddi^ flux vorticity from within the 
interior streamlines to the frictional region for removal. 

Using boundary-enhanced viscosity, western-intensified calculations are p(Bsible 
with lower interior viscosity than in previota studies. Meriting behaviors result: a 
boundary-layer balance novel to the model, calculations with promise for eddy param- 
eterization, eddy-driven gyres rotating opposite the wind, and temporal complexity 
including basin resonances. 

I also demonstrate that multiple-gyre calculations have weaker mean circulation 
than single-gyres with the same viscosity and subtropical forcing. D^pite traditional 
understanding, almost no inter-gyre flux occurs if no-shp boundary conditior^ are 
used. The inter-gyre eddy flux is in control only with exactly symmetric gyr^ and 
free slip boundaries. 

Even without the inter-gyre flux, the multiple-gyre circulation is weak because 
of sinuous instabiHties on the jet which are not present in the single-gyre model. 
These mod« efficiently flux vorticity to the boundary and reduce the circulation 
without an inter-gyre flux, postponing inertial domination to much smaller viscosities. 



Then sinuous modes in combination with boundary-enhanced viscosity can control 
the circulation. 
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Chapter 1 

Introduction 

1.1    Westward Intensification 

Perhaps the most striking feature of the general oceanic wind-driven 

circulation is the intense crowding of streamUnes near the western borders 

of the oceans. The Gulf Stream, the Kuroshio, and the Agulhas Current 

are example of this phenomenon. The physical reason for the westward 

crowding of streamhnes has always been obscure. The purpose of this 

paper is to study the dynamics of wind-driven oceanic circulation using 

analytically simple s:^ems in an attempt to discover a physical parameter 

capable of producing the crowding of streamlines. 

-Stommel (1948) 

There is a pecuhar physical mechanism at work in the formation of the western 

boundary currents. The fluid chooses a location for the boimdary current by compass 

direction, a result which is relatively independent of forcing, details of the local to- 

pography, and the sense of rotation of the earth (as there are still western boundary 

currents in the Southern Hemisphere). 

The purpose of this dissertation is to explore the mechanisms which allow Stom- 

meFs 'physical parameter capable of producing the crowding of streamlines' to con- 
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tinue to function as the models of the ocean become more inviscid and time-dependent. 

The thesis of this dissertation is that the effects of boundaries and the effects 

of eddies work together as an important control on the strength of the circulation 

even as the ocean becomes less viscous. In relatively inviscid models of the ocean, 

the input of vorticity from the wind's forcing is transported by eddies toward the 

boundary where it is removed by processes that can only be found at the edges of the 

ocean. 

1.1.1    Previous Studies Using the Homogeneous Model 

Before I introduce the topics covered in this dissertation in detail and summarize the 

chapters, it is helpful to place the questions asked here in context with previous work. 

A model which is equivalent to the one Stommel used to propose his theory of 

westward intensification has come to be known as the homogeneous ocean model. 

In this model, the fluid is considered to be rapidly rotating and of uniform density 

Traditionally, it is also assumed that there is a constant depth of fluid. These as- 

sumptions allow the Navier-Stokes equations of fluid motion to be reduced to a single 

equation for the streamfunction of the 2-dimensional motion (^ = -u,^z=v). In 

the nondimensional form used in this dissertation, it is 

Stommel solved for a square ocean, and during nondimensionalization the square 

becomes unit length in each direction. The variable ^ is the streamfunction of the 

depth-integrated velocity (u = -g and t; = f). This equation is called the vorticity 

equation, because it describes the time evolution of V^^, the component of relative 

vorticity in the vertical direction. 

The nondimensionalization has used the following definitions (asterisks denote 
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dimensional quantities) 

^E.^WBWE      ^N|^ (1.2) 

a;, = Lx      y^ = Ly (1.5) 

The maximum of the wind's vorticity input is WB- Twice the rate of angular rotation 

of the frame is /. Its value in the center of the domain is /o, and its meridional 

derivative is /3. The depth of the moving fluid is D, and the zonal width of the basin 

is L. The horizontal eddy viscosity, or Austausch coefficient, is AH- The decay rate 

due to the bottom drag is r. 

This nondimensional form is chosen so that the coefficients are powers of the 

widths of the boundary layera in various traditional models. 

All of the models proposed here will be considered to be driven by the wind 

(although other forcing mechanisms can be expressed similarly as sources of vorticity). 

Thus, the function WE is the vorticity supphed by the forcing of the wind. 

Linear Solutions: Breaking the Symmetries 

The first truly useful result for studying the wind-driven ocean circulation was found 

by Sverdrup (1947). He combined the depth-integrated, linearized horizontal momen- 

tum equations with a wind-stress and the continuity equation. This gave him cause 

to take the derivative of the Coriolis parameter and thereby derive an equation which 

distinguishes the north-south direction. 

Written in the nomenclature of the vorticity equation 1.1, Sverdrup's solution is 

^/= /  WECLX' (1.6) 
Jxt 
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Only one boundary condition is used to solve for this solution: the requirement 

that the streamfunction vanish at the eastern boundary {tp{x = Xg) = 0).^ This 

automatically causes the eastern boundary to be impermeable to the fluid. 

Sverdrup's solution will be referred to frequently in this dissertation as it applies 

wherever friction and nonlineaxity are negMgible. In fact, the nondimensionalization of 

equation 1.1 is constructed to utilize Sverdrup's solution in the scaUng of the stream- 

function. The wind forcing will not vary in the zonal direction, and the ma^mum 

magnitude of the wind forcing will always be 1, and the basin width is scaled to be 1. 

Thus, equation 1.6 can be integrated for Sverdrup's solution in this nondimensional 

form, and the maximum magnitude of the streamfunction will be 1 (at x = 0). 

Sverdrup realized that since this result uses only the depth-integrated equations 

of motion, this balance might hold for baroclinic flows as well as barotropic. In 

fact, the Sverdrup relation is one of the only simple constraints on a barochnic flow. 

Many subsequent theories {e.g., the thermocline theory of Luyten et al. (1983)) use 

the Sverdrup balance as a starting point precisely because of its simpHcity This 

dissertation will frequently return to whether the Sverdrup balance holds in a model 

calculation. This is an important issue in assessing the generaHty of theories such as 

that of Luyten et al. (1983). 

Sverdrup's theory breaks the symmetry of 2-dimensional space by distinguishing 

the northern direction with the use of the gradient of the Coriohs parameter. The re- 

sulting anisotropic term in the vorticity equation, V ■ (x^) = f, is usually called the 

/?-term, because /? is the typical notation for the derivative of the Coriolis parameter, 

although it does not appear in the equations above because they are nondimensional- 

ized using it as a unit measure. It results from the advection by the fluid of the fluid's 

vorticity due to the rotation of the Earth. To demonstrate its anisotropy, consider a, 

90 degree counter-clockwise rotation of the coordinate axes: replace x with y and y 

!? ?'^ dissertation, the impermeability of the basin will be implemented by setting ^ to zero 
on the boundary. This is not necessary, or even correct in some models. However, in the context of 
the homogeneous model, it is appropriate. 
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with -a; in the vorticity equation 1.1. Only this term changes in sign. Thus, were 

it not for this term, no direction would be uniquely selected as any solution of the 

equation would remain a solution were it rotated by 90 degrees. 

Stommel (1948) was the first to group together the dynamics of the western bound- 

ary currents with the anisotropy of the /?-tenn. He used a simple model of an ocean 

basin: a rectangular impermeable basin with wind, the ^-term, and bottom friction, 

-SsV^if). This resulted in the vorticity equation 1.7. 

— =WB- 5sWi> (1.7) 

Stommel chose a particular wind stress (r^ = -siniwy/L)) and solved this equation, 

but this equation would have apphed to any wind stress. The solution is given in 

equation 1.8 for a case where WE varies only in t/ and 5s < 1. I have included a plot 

of the Stommel (1948) solution (figure 1-la) for the same wind forcing Stommel used: 

WE = —sin Try. 

^ = # (l - e-^/*^) (1.8) 

The asymptotic solution in the interior {x > 6s) of Stommel's model is just ipi from 

Sverdrup's solution (equation 1.6). Near the western boundary Stommel's solution 

diverges from Sverdrup's in order to satisfy the impermeable western boundary condi- 

tion. A second boundary condition can be imposed because the bottom friction term 

raises the differential order of the vorticity equation. Because the bottom friction 

term is the only second-order term, it must be responsible for satisfying the second 

boundary condition, and it is therefore not surprteing to find it to be a large con- 

tributor in the region of the w^tem boundary where the second boundary condition 

must be satisfied. 

Stommel pointed out that without the gradient in Coriohs parameter the model is 

symmetric in the east-west direction. He demonstrated this with a plot of the solution 

without the ^-term. Here it suffices to note that Stommel's vorticity equation without 
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the /3-term is Poisson's equation and is therefore obviously isotropic. 

Equation 1.1 is anisotropic because of the /?-term. Sverdrup retained just enough 

terms to distinguish north, while Stommel's model (equation 1.7) has a second asym- 

metry - it knows the difference between east and west intrinsically. Sverdrup's model, 

on the other hand, had a vorticity equation which did not distinguish east from west; 

Sverdrup's model distinguishes east and west only by the choice of where the im- 

permeabihty boundary condition is satisfied. Consider a switching x to -a; in the 

equation for Stommel's model (equation 1.7), since the ^-term changes sign while 

the bottom friction doesn't, clearly the equation changes. Because the /?-term has 

only one x-derivative while the friction term has two, the solution must exponentially 

decay from west to east. Thus, it is not possible in Stommel's model to substitute an 

eastern boundary current, the boundary current must be in the west. 

Munk's first paper on westward intensification came soon after Stommel's (Munk 

(1950)). Munk and Carrier (1950) followed up with more realistic basin shapes and 

observed wind stresses. Munk's achievement was to use a lateral friction with constant 

viscosity (5iVV) instead of the bottom drag used by Stommel. The advantage of 

this form of friction is that its viscosity can be thought of as eddy viscosity, a topic 

discussed further below. He solved the vorticity equation given by equation 1.9. 

_ = fc.Vxf+5|,VV (1.9) 

This vorticity equation requires an additional boundary condition at each boundary 

Munk used no-slip, where the tangential velocity vanishes at the boundaries (^ = 0). 

This is the boundary condition appropriate for the solution of the Navier-Stokes 

equations from which the vorticity equation is derived. However, the viscosity in 

Munk's model is not intended to represent molecular viscosity, it is intended to be 

an eddy viscosity, a representation of the mbcing by eddies. Because it is not clear 

that the parameterization of eddies should obey the same boundary conditions as 

that for molecular viscosity, Welander (1964) provided the solution for sUp boundary 
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conditions (abo known as no-stress or free-slip). Th^e boundary conditions require 

that the normal str^ vanishes at the boundaries {V^ip = 0). Both of th^e boundary 

conditions are used in this dissertation, and they produce quite different results. 

In the case of no-shp boundary conditions, Munk's solution is 

i) = i)i (1.10) 

In the case of shp boundary conditions, Welander's solution to the Munk problem is 

i) = i)i l-e -z/25j, cos 
y/Zx      1    .   %/3a 

sm- 
2<5M      y/Z       2(5, 'M 

fl.lll 

I have included a plot of the Munk (1950) solution with no-slip boundary conditions 

(figxire l-2a). 

As in Stommel's solution, Munk's solution asymptotically approaches the Sver- 

drup balance as x becomes much larger than 5M, and hke Stommel's solution the 

east-w^t synmietry-breaking occurs because the /?-term changes sign upon changing 

X to -X while the frictional term does not. Also as in Stommel's model, the frictional 

term is the term which raises the differential order requiring the imposition of addi- 

tional boundary conditions beyond no-normal flow at the eastern boundary. In fact, 

because the differential order is raked to four, three additional boundary conditions 

are required: no-normal tow in the west, and either no-slip or no-stress at both the 

eastern and western boundaries. In the same way as in Stommel's model, the western 

boundary is the only choice for the boundary layer which avoids exponential growth 

in the streamfimction as one moves away from the boundary. 

The wind-driven solutions of Munk (1950), Stommel (1948), and Sverdrup (1947) 

all share the same interior flow in which the advection of planetary vorticity balances 

the vorticity input of the wind. In Munk's model and Stommel's model, which are 

closed, the vorticity input is subsequently removed by a frictional term. 

The vorticity equation 1.1 is an equation which can be used to budget the import '.-. 
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and export of vorticity from region to region. When inertia is included but there are 

no frictional terms, the absolute vorticity SjV^tp+y is conserved following the motion 

of a fluid parcel. On the other hand, when inertial terms are absent, the advection of 

relative vorticity is neglected; only the planetary vorticity is advected. 

Because Stommel's and Munk's models are linear, relative vorticity can not be 

advected. This requires that any change in the latitude of the fluid be accompanied 

by a change in vorticity to match the new local planetary vorticity. In the Sverdrup 

balance, this change is accomplished by the wind forcing, but in the frictional bound- 

ary layer, this change must be accompUshed by friction. It is not difiicult to show 

that this implies that the vorticity input by the wind at a particular latitude must 

be removed by the friction at that same latitude. 

Pedlosky (1965a) presented another way to break the symmetry between west and 

east: the propagation of Rossby waves. Free Rossby waves in this model are solutions 

to the equation 

-^^ + V-(x^) = 0 (1.12) 

Again, the ^-term changes sign when the sign of x changes but another term, the rate 

of the vorticity change with time, does not. Thus, Rossby waves are not symmetric 

in behavior to the east and west. When put in physical terms, Rossby waves have 

different wavelengths when their group velocity is eastward rather than westward. 

Westward propagating waves are longer than eastward propagating ones. Eastward 

propagating waves obey k^ > l"" while their westward partners do not. So, if eastward 

short Rossby waves are reflected at an eastern boundary, they will be reflected as 

westward (long) Rossby waves. If westward long waves are reflected at the western 

boundary, they will become eastward short waves. 

Now, Pedlosky noted that if there is a process which selects to retain long waves 

over short ones, the wave activity will tend to be most pronounced near the western 

boundary.   For example, in the presence of lateral friction, the shorter waves will 
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— is^ 

be preferentiafly dissipated in a time 0{S^k-^). If one comiders that th^e waves 

propagate with zonal group velocity Cg fi^ ^, then short waves generated at the 

w^tern boundary will only propagate a distance 0{5M) away from the boundary. 

Similarly, even though bottom friction isn't scale selective, the distance traveled by 

short waves in the dissipative time is 0(%). Thus, the length scal^ of the Munk and 

Stommel boundary conditions reappear in Pedlosky's model. 

All of the linear theori^ can be brought together by noting that the vorticity 

equation is not only an advective equation for the vorticity following the fluid parcel, 

but it is also a flux equation for the point-by-point vorticity. Thus, it describes where, 

in the Eulerian framework, the vorticity is supphed, transported, and removed and 

by what mechanism. 

The ^-flux, ^x, is proportional to x, so it is always an east-w^t flux. Whether 

it is to the east or the west is determined by where the boundary conditions on the 

streamfunction axe set, i.e., by the sign of ^. If the streamfunction is set to zero in 

the east, following Sverdrup (1947), then the ^-flux will be westward for negative ^ 

and eastward for positive ^. In a Sverdrup interior, the eastward flux, or to put it 

more sensibly, the westward flux of negative vorticity is caused by a negative vorticity 

input from the wind in the basin interior (as is the case in the subtropical gyre). A 

westward flux of positive vorticity is forced by a positive vorticity input in the basin 

interior. 

Whatever sign of vorticity is fluxed to the west by the /?-term, it cannot leave 

the basin as the ^-flux must vanish at an impermeable boundary. Thus, it must 

diverge before reaching the boundary. Each Mnear theory pr^ents a flux divergence 

to balance the /3-flux divergence-bottom friction, lateral friction, or tim^derivative. 

All of these balancing flux divergences exhibit symmetry upon switching the sign of 

X, while the ^-term is anti-symmetric upon switching the sign of x. Thus, there is an 

intrinsic distinction in the vorticity equation between east and west, and a balance 

of the flux divergence can only be struck with a boundary current in the west. 

19 



Similar ideas using vorticity fluxes will be used throughout the dissertation to illus- 

trate the physical mechanisnas responsible for the collection of vorticity in particular 

locations. 

Nonlinear Solutions: Returning to Symmetry 

Charney (1955) proposed a different kind of theory for the presence of boundary 

currents in the ocean. Since the ocean is relatively inviscid, it seemed to Charney that 

the friction was playing too much of a role in the theories of westward intensification. 

Charney's solution was to propose an entirely inviscid model which solved a model 

similar to 

^ • (*^ - ^^/^ v'^+y^i^"^'^) = 0- (1-13) 

This solution was intended to apply only near the boundary, and the Sverdrup solution 

would hold in the interior.^ 

Interpreted in the Lagrangian framework, this equation states that the absolute 

vorticity (Jf W + y is conserved following a fluid parcel It is therefore automatically 

solved so long as a single-valued function exists between ip and SjV^tp + y. Charney 

assumed that the boundary current would appear on the west and used the ^/ from 

the Sverdrup solution to determine the relationship as the flow entered the boundary 

current. Then, by insisting that ^ = 0 at the boundary, he could reuse the function 

between V and (JfV^V; -f y to generate a boundary layer solution, which turns out to 

have a width Sj. 

The problem with Charney's solution is that it only works so long as the function 

between ^ and SjV^^lj+y remains single-valued, yet in the basin interior the absolute 

vorticity is nearly equal to y (as the relative vorticity is negligible). If the fluid is 

to enter the boundary current at a small value of y and leave it at a large value of 

^Charney did not use the fixed-depth approximation, so the theory presented here differs from 
his, but is the corresponding solution in the homogeneous model. 
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t/, the function between if) and SjV^ + ycm not be single-valued. Making matter 

worse, Greei^pan (1962) was able to prove that no steady inertiai theory could match 

smoothly to the interior, in the region where the fluid exits the boundary current. 

Restating the problem with Charney's model in terms of the balance of Eulerian 

fluxes, the ^-flux divergence in the boundary layer is balanced by the constant import 

of relative vorticity advected firom the interior. When the fluid leaving the boundary 

current is advected toward the interior, the import become an export and the interior 

solution can no longer be matched. 

Other competing inertiai theories to Charney's arose, such as that of Carrier and 

Robinson (1962) and Morgan (1956), but they were also incomplete. 

In a result which is referred to a number of times in this dissertation, Fofonoff 

(1954) was able to find a complete solution, but for free modes instead of wind-driven 

solutions. His approach was similar to that of Chamey, except since he didn't have 

to match to an interior solution, he was firee to choose the function relating^ and 

S]V^i)+y as he pleased, so long as it was single-valued. He chose a linear relationship 

and was able to produce firee solutions. 

However, a completely inertiai theory like that of Fofonoff (1954) or Carrier and 

Robinson (1962) can never accept a constant input of vorticity fi-om the wind, because 

none of the flux^ in an inertiai theory-time-dependent, ^-flux, or advection of relative 

vorticity flux-can ultimately remove vorticity firom the basin. These fluxes can only 

move the vorticity around within the basin. Thus, an equihbrium can never be 

achieved. 

Another problem with any of the purely inertiai steady-state theories is that they 

do not distinguish east firom west. Note that in Charney's equation 1.13, aU of the 

terms change sign when x changes to -x. Thus, these theories are incapable of dis- 

tinguishing between a western and an eastern boundary layer; any solution which 

works with K will also work with -x. The steady-state inertiai theories do distin- 

guish north firom south, but they do not break the mirror symmetry to distinguish 

21 



east from west. In the homogeneous model, one of the following terms is required 

to distinguish western boundary currents from eastern: time-dependence (Pedlosky 

(1965a)), bottom friction (Stommel (1948)), or lateral friction (Munk (1950)). 

Perhaps one can fix the Charney solution and at the same time force the boundary 

currents to the west. Suppose only a small amount of friction is used. Then the 

relative vorticity of the fluid could change as it propagated through the boundary 

current so that the problem with returning to the interior flow might disappear. 

Simultaneously, the introduction of friction would distinguish east from west. 

With this in mind, we turn to the problem of the inertial Munk and inertial 

Stommel solutions. In these solutions, the friction and the advective terms are con- 

sidered simultaneously. Once the exact conservation of vorticity is broken, however, 

the hope of analytic treatments of equations containing the nonlinear advective terms 

drops precipitously. For this reason, our review of westward intensification switches 

to computational results. 

Once the effects of both inertial and frictional terms are considered simultane- 

ously, it is helpful to provide a dimensionless constant which weighs their relative 

importance. When lateral friction and inertia are compared, the Reynolds number 

is this constant. It relates the typical scale of the inertial terms to the typical scale 

of the frictional ones. Since most of the inertial activity here goes on in the western 

boundary layer, it is the ratio of the terms in the western boundary region that is 

important. There the scaling of Charney's solution gives the following: g « 5Y\ 

and g « 1. This scaling results from the width of the boundary layer being Char- 

ney's width (5,), and the length of the current being the basin dimension (which is 

1). Recall that the nondimensional wind forcing is chosen to give a Sverdrup solution 

with xj} of order 1. Examining these scales, we find: 

0(V-(xV))«(57^ 

O (V • (-xJll^ W)) « 5T' 
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The Reynolds number will be very important in this dissertation. 

Friction in Numerical Modeb 

In order to get a boundary layer of the correct width, Munk's model requires that 

the viscosity be many orders of magnitude larger than the molecular viscosity of 

water. The kinematic viscosity of water is about 1 • IQ-^m^/s for ocean surface 

temperatures. The nondimensional Munk width used here is 6M = {AHI{PL^)YI^, 

where AB is the eddy viscosity. Thus, in order to have a 100 km Munk boundary 

current in a 10,000 km basin with /? = 2 ■ 10-"(ms)-\ the value of AH needs to be 

approximately 2-10*m2/s, ten orders of magnitude larger than the molecular viscosity. 

The reason that this is allowable is that the larger viscosity is intended to represent 

not molecular viscosity, but eddy viscosity. If an estimate of eddy viscosity is made 

from observations, then this larger value is more reasonable. For example, LaCasce 

and Bower (2000) determined that the dispersion of subsurface floats in the ocean is 

coi^istent with an eddy diffusivity of floats in the range: 2 • 10*(mVs) to 2 • lO^Cm^/s) 

for floats separated by greater than 100 km. If the vorticity of the fluid is transported 

along with the floats then the eddy viscosity would be equal to the eddy difRisivity 

of the floats. 

Eddy viscosity is a simplistic way to repr^ent the effects of unresolved eddies into 

a model without deahng with the eddying motions themselves; it is a parameterization 

of the eddies. Eddy viscosity is a good approximation when the motions of the eddies 

are relatively homogeneous and isotropic and have significantly smaller scales in space 

and time than the physics being expUcitly modeled. 

To illustrate the meaning of eddy viscosity and the assumptions it involves, I will 
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consider two approaches to the problem: top-down and the bottom-up. 

For the top-down approach, consider the running average of equation 1.1 over a 

spatial scale Ax, Ay and a time scale At We can then define the slowly-changing 

part of any of the fields / as: 

We can now take the average of each term in equation 1.1. Most of the terms will be 

of the form: 

fX+Ax   ry+Ay   ft+^t a„ ,^,    , 

dt        AxAyAt 

^^ = A^/r^^ r ^^ ir""' V • Vdtdyda:. 

Now, if the integral of the eddy field is such that over the time and space scales of the 

integration its integral tends to zero, then the derivatives in the preceding equations 

and the integrals approximately commute, just as if the averages were not over space 

and time but over an ensemble of different realizations of the flow. 

If there were no mean flow and the domain were infinite, then the averages could 

be taken in the limit that Ax and At go to infinity If these averages converge, then 

the fields are ergodic. Without a mean flow, the ergodic eddy fields' statistics are 

stationary in time and homogeneoiis in space. 

Here, in order to make the averaging formaUy correct we require the stronger 

constraint that these integrals converge rapidly That is, there must be a separation 

of scales between the eddy field and the mean field. If there is a scale separation, 

then the integrals and the averages commute. So, for example if equation 1.1 were 

considered to be the true dynamics if aU scales could be resolved, then it can be 
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written in Reynolds-averaged form: 

dt + ^ + Spii},V^) + 6pii/,V^ij')-V-6%VV^i^ + SsV^ii  =  WE. 

The operator J is the Jacobian, which is defined as J{A,B) = MM _ ^|d for 
^    ^     / dm dy        dx By 

arbitrary A and B. This equation is just like equation 1.1, except instead of acting 

on the total field ij), it acts on the slowly-evolving field ^ and there is a new eddy 

term proportional to J(^', V^^') = V • {u'V^ip'). 

The bottom-up approach estimates the eddy term from the top-down approach. 

This approach is related to the one without a slowly-evolving flow first proposed by 

Taylor (1921), To begin, we consider a small region in a coordinate frame which 

moves along with the mean velocity over the small region and averaged with time so 

that M = 0. Then, we corsider the motion of a parcel of fluid moving turbulently 

beginning at the origin of these coordinates, so that its location and displacement are 

both given by x'(t). If we consider a tracer in the fluid which is nearly conserved, 

q (with a slowly-varying component q and perturbations from that slowly-varying 

component a') then we expect that as this parcel moves about it retains nearly the 

same amount of this tracer. As pointed out in the last section, the absolute vorticity 

is a nearly conserved quantity. Thus, 

g(x',t)f«g(xo = 0,t = 0). 

If this parcel possesses the tracer concentration typical of its initial location, then the 

size of its tracer anomaly at its new location can be estimated: 

g(x',t) « g(xo = 0,t = 0) « f(xo = 0,t = 0), 

g'(x',t) = g(x',t) - g(x',f) ^ -x' ■ Vf(x,t). 

The last step is a truncated Taylor expansion. This validity of performing and trun- 
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eating this expansion relies on two assumptions. First, the terms involving higher 

derivatives of q are neglected because q is considered to be changing slowly enough 

across the domain to be Hneaxized. Thus, again there must be a clear scale separation 

between the scale of variation of 9 and the eddy scale, x'. Second, x' is considered to 

be independent of q, that is, q should be a passive tracer.^ 

The eddy flux of tracer is therefore estimated by 

u'g' « -u'(x' • Vg) 

If we assume that the eddy field is isotropic and make the simpUfying assumption 

that there are no cross-correlations in the displacements, then^ 

Taking the average. 

An important assumption has been that the eddy scale is separated from the slowly- 

evolving scale. Now, we are in a position to be more precise as to the meaning of 

the eddy scale. If the eddies are somewhat random in their movements, we expect 

that when the eddies are allowed to evolve over a large enough region and for a large 

enough time, the rate of displacement will become constant, that is, 

lim(^x'Hoo[||M]=/c. 

Now, once again, we require the scale separation of the eddies and the slowly-evolving 

Although there can be a relationship between q and u, q must be passive at least the functional i ■ 
relationship relating them doesn't change the form or the Taylor expansion given above I - 

This step can be performed without neglecting the cross-correlations, but tensors must be used K- 
to do so. Thus, for simplicity I avoid this step. : "* 
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flow; this limit must converge before the slowly-evolving scales are reached. 

A similar but more extensive presentation of the meaning of eddy viscosity is 

given in Tennekes and Lumley (1972). More rigorous presentations are to be found 

in Batchelor (1952) and Batchelor (1960). 

Of course, the eddy viscosity model is flawed; eddies in fluids typically do not have 

clearly separate spatio-temporal scales from the mean, and vorticity k not a passive 

tracer. Furthermore, the presence of boundaries and structure in the time-mean flow 

places the assumption of turbulent isotropy and homogeneity in doubt. 

To minimize the flaws of eddy viscosity, it is often the goal of numerical modelers 

to resolve as many of the eddi^ as possible. That is, to make the eddy vkcosity 

smaU and explicitly deal with as many of the motions that result as possible. Ocean 

modelers typically produce large eddy simulations. That is, they use a eddy viscosity 

which is larger than the molecular viscosity, but the appropriate eddy viscosity is 

governed by the scale of motions explicitly resolved. If this scale changes because 

of a change in resolution, more and more of the motions are explicitly calculated, 

and so less and less of the eddies are parameterized. Thus, the estimates of eddy 

diffusion coefficient in the ocean that I have cited from LaCasce and Bower (2000) 

should be interpreted as close to the maximum eddy viscosity to use sensibly, because 

these numbers are found in the Umit of very long time averages and very large spatial 

averages and therefore correspond to a model for a very slowly-evolving state with 

most of the eddies parameterized. 

One further point should be made when discussing friction in numerical- models: 

numerical dissipative errors. 

The standard approaxih to solving partial differential equations is to discretize 

using some approximation of the continuous field at points on a fine grid (finite 

differences) or approximate the average of the continuous field within little celk (finite 

volumes). The operators on the continuous fields are estimated in the discretized 

model by arranging to find as many of the terms in a Taylor series expansion of 
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the result of the operators using the values at the grid points or the averages over 

the volumes. The order of the discretization is the order to which the Taylor series 

expansion is satisfied. 

Interestingly, some of the errors that result from truncating the Taylor series ex-- 

pansion act as though the discrete representation is a representation of the continuous 

fluid with more viscosity or hyperviscosity than is expHcitly incorporated into the dis- 

cretized equations. These dissipative errors increase as the grid resolution decreases. 

Thus, when a model is set up in finite differences or finite volumes and solved, the 

model may act in a more dissipative manner than desired. As the Reynolds number 

increases along with the demands on the model resolution, these errors will become 

larger and larger, even before the onset of numerical instability due to insufficient 

resolution. The primary model used in this dissertation is spectral, which avoids 

dissipative errors but has other sorts of errors instead (see section C.5 for a discussion 

of these errors). 

However, dissipative errors are prevalent in many calculations in publication. Er- 

rors are an inevitable consequence of numerical modeUng. Thus, when a calculation is 

purported to be operating at a particular Reynolds number, but the firictional length 

scales are comparable to or smaller than the grid scale, it is hkely that the errors 

in the discretization make the numerical model closer to a representation of a more 

viscous model than a properly-resolved model using the explicit value of the viscosity. 

This should be kept in mind when a result is presented from a model with a particular 

explicit viscosity and marginal resolution. 

Failure at Moderate Reynolds Number 

Before going on to two-dimensional calculations, it is the appropriate point to mention 

the results of lerley and Ruehr (1986). They solved a one-dimensional approximation 

to the inertial Munk model in the boundary layer numerically, and showed that the 

diflScultly in connecting to the interior flow in the exit region that troubled Charney's 
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model persists even when friction is present, once the Reynolds number is greater 

than one. Apparently, the one-dimensional bomidary-layer approach is too limited to 

capture the full dynamics. 

We now turn to calculations of the inertial Munk and inertial Stommel model in 

two dimemions. One school of thought has sought to simplify by keeping ail of the 

time-dependent phenomena parameterized by the eddy viscosity. These researchers 

calculate steady-state solutions of the inertial Munk and inertial Stommel modek. 

Some interesting results have been found by calculating steady-state solutions. 

First, as demonstrated convincingly by leriey (1987) (and ftirther studied by Cessi 

et al. (1987) and lerley and Young (1991a)) at the same Reynolds number as the visco- 

inertial solution of lerley and Ruehr (1986) break down, a recirculation gyre fom^ in 

the exit region from the boundary current. Since a recirculation te a two-dimensional 

phenomenon, it need not obey the one-dimemional boundary-layer approximations 

used by lerley and Ruehr (1986). Also, lerley and Sheremet (1995) found that, 

because of the nonlinearity of the inertial terms, more than one solution is possible 

for the inertial Munk problem with the same forcing. 

However, a troubling effect occurs in these steady-state numerical calculation. 

As the Reynolds number becomes moderately large, the solution strength increases 

rapidly and apparently without bound. This effect was first pointed out in an inertial 

Stommel model by Veronis (1966b). lerley and Sheremet (1995) fuUy explored this 

result in the inertial Munk model. Figures 1-1 and 1-2 show tins behavior in steady- 

state solutions found with the method d^cribed m Appendix B. 

A change in circulation strength with a change in viscosity is not unexpected 

behavior for a simple physical system. If the friction is removed while the forcing is 

kept steady, then of course any system with inertia would behave in this way. The 

troubhng aspects are that the inertia dominates at such a low Reynolck number, 

many times smaller than the Reynolds number estimated to be appropriate for ocean 

models and the real ocean, and that westward intei^ification is lost as the circulation 
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Figure 1-1: (a-d) contour the steady-state streamfunction for the homogeneous model 
with bottom friction only, (a) shows the 5i = 0, <Js = 0.04 calculation and has 
max(V') = 0.70. (b) shows the 5i = 0.04, 6s = 0.04 calculation and has max(^) = 
0.68. (c) shows the 5i = 0.08, 5s = 0.04 calculation and has max(V') = 0.73. (d) 
shows the 6i = 0.1, 5s = 0.04 calculation and has max{tp) = 0.83. The contour 
mterval is 0.1 in units where 1 is the maximum of the Sverdrup solution. 

strength increases. Although a fairly large recirculation gyre may be consistent with 

ocean observations (see Sheremet (2002) for a discussion), it is clear that the the 

oceans are western-intensified on the large scale and that figures l-2c and l-2d are 

therefore unrealistic. 

Of course, the missing ingredient might be the effect of eddies. It is sensible that 

since the large value of the viscosity was intended as an eddy viscosity, lowering it 

would require and induce the presence of unstable, time-dependent motions through 

the natural instability of fluids. These eddies might be able to replace the effects of 
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Figure 1-2: (a-d) contour the steady-state streamfunction for the homogeneous model 
with lateral friction only. The frictional boundary conditions are no-slip on the eastern 
and western boundaries and slip on the others, (a) shows the 5j = 0, <5M = 0.05 
calculation and has max{ip) = 0.93. (b) shows the Sj = 0.05, 5M = 0.05 calculation 
and has max(#) = 1.02. (c) shows the 6i = 0.0625, 5M = 0.05 calculation and 
has max(^) = 1.5. (d) shows the 5i = 0.08125, 5M = 0.05 calculation and has 
max(^) = 4.5. The contour interval is 0.1 in units where 1 is the maximum of the 
Sverdrup solution. 

lowering the eddy -viscosity as the Reynolds number increased, as is crudely the case 

in large eddy simulations of homogeneous, isotropic 2-dimensional turbulence (for 

example, McWilliams et al. (1994)). Figure 1-3 shows the result of such a calculation 

for the homogeneous model. This result agrees with other studies such as that of 

Kamenkovich et al. (1995). 

In this dissertation, I refer to the solutions such as that in figure l-3d as inertially- 

dominated.  Some authors refer to the appearance of inertial-dominance at modest 
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Figure 1-3: (a-d) contour the time-mean streamfunction for the homogeneous model 
with lateral friction only. The frictional boundary conditions are no-slip on the eastern 
and western boundaries and slip on the others. The solution is calculated using the 
Chebyshev-polynomial time-dependent integrator_described in Appendix C. (a) shows 
the SI = 0, 5M = 0.02 calculation aiid has max(V') = 0.93. (b) shows the 5j = 0.02, 
6M = 0.02 calculation and_has max(^) = 1.31. (c) shows the 5i = 0.02, 5M = 0.01387 
calculation and has max(V') = 3.15. (d) shows the 5i = 0.02, 5M = 0.0117 calculation 
and has max(^) = 4.23. The contour interval is 0.1 in units where 1 is the maximum 
of the linear Sverdrup solution. 
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Reynolds numbers as the problem of inertial runaway. However, that term will rarely 

be used here because it implies that no eqxiilibrium is reached. These calculations do 

reach an equiUbrium, it is just at a much higher mean chculation strength and less 

westward intensified than desired. 

One might suppose that perhaps the inertial domination occurs becat^e the ho- 

mogeneous model is two-dimensional. The important effects of baroclinic instabihty 

are neglected here. However, even when a model which incorporates the third dimen- 

sion using layere of fluid stacked on top of each other is used inertial-domination is 

observed at moderate Reynolds number (for example, Holland and Lin (1975)). 

Why is it unacceptable that the circulation strength increases so rapidly in this 

model? Presumably it indicate the readily apparent fact that there are phj^ical 

processes missing from the model. From a historical perspective, the reason Stommel 

(1948) began all of this research was to explain why the intemification was toward the 

w^t. As shown in figure l-3d, the inertiaUy-dominated solutions are not particularly 

w^tern-intensified. This lack of w^tward intensification can be easily understood 

by appeal to the flux arguments above. When the circtilation strength increases 

sufficiently, the westward flux of vorticity of the ^-term fe swamped by the eastward 

flux of vorticity of the inertial terms exiting the boundary current. One expects that 

with higher Reynolds number, the solution will become completely symmetric in the 

east-west direction as the firictional tenm are no longer large enough to break the 

sjrmmetry. 

1.1.2    What Sets the Wind-Driven Circulation Strength? 

A simple model is very likely to become inertially-dominated as the friction decreases; 

just as a bicycle wheel would spin faster and faster if the fHction were greased away 

with a constant torque apphed. But, the ocean K not a simple model, it is a complex 

physical system, and it can change its response to forcing in many ways. Obviously, 

it responds in such a way that it does not require enormous circulation strength at 
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small viscosity nor does it possess laxge viscosity. 

Ultimately, of course, the friction will have to play a role in setting the circulation 

strength, as the ocean constantly receives an input of vorticity forced by the wind. In 

a model of only oceanic processes that conserve energy and vorticity, the quantity of 

each would continue to build indefinitely without the effects of friction. As mentioned 

above, perhaps it is not necessary for the friction to reach the molecular viscosity, but 

at least, it should be clear what processes are represented by an eddy viscosity, and 

the parameterization should be replaceable with resolved physics at least in principle. 

However, can a model be made which prevents the enormous increase in the time- 

mean flow of the wind-driven ocean which is relatively inviscid, simple, and western- 

intensified? Such a model is presented in Chapter 2 of this dissertation. 

Interestingly, the Sverdrup solution appears to set the circulation strength with- 

out considering friction. How is this possible? The Sverdrup relation, though it can 

determine circulation strength, in order to do so, it requires a passive boundary cur- 

rent. That is, the reason that the Stommel, Munk, and Charney models were able 

to attach to the Sverdrup flow was that they did so passively. Passive attachment 

requires that the necessary mass flow and the necessary removal of vorticity is per- 

formed. The Stommel and Munk models lack advection of relative vorticity, so the 

removal of vorticity is no problem. Also, since the solutions are hnear, if the solution 

exists at one forcing strength it exists at all forcing strengths there is no Umit to 

the mass transport that these hnear solutions can carry. The Charney model can 

not reattach passively, so although it removes no vorticity from the flow, it need not 

because it doesn't describe a complete circulation. 

Thus, the necessary criterion in for the simple model has to do with reattachment 

of the boundary layer to the interior flow. In order to do this, the boundary current 

must be able to transport enough mass and remove enough vorticity in the region of 

the boundary layer. If not, the reattachment is doomed to fail. As we will see, the 

formation and strength of recirculation gyres in the exit region indicates the mismatch 
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in rejoining the interior flow. Most of the calculations in figure 1-1, 1-2 and 1-3 do 

not have a passive boundary layer. Even when they are not inertially-doininated they 

do possess a recurculation gyre whidi increases the maximum of the streamfimction 

some degree above 1, the Sverdmp solution maximum. 

The requirement of a change in vorticity in a relatively inviscid boundary layer is 

reminiscent of the study by Edwards and Pedlosky (1998). They modeled the cross- 

equatorial flow of a deep western boundary current. Thus, the flow was input with a 

particular planetary vorticity and removed with a different vorticity. As the Reynolds 

number of their boundary current increased, it became increasingly difBcult for the 

vorticity trai^formation to occur. We will see that the boundary current found in 

the calculations here dynamically resemble the boundary current found by Edwards 

and Pedlosky (1998). 

1.1.3    The Role of Vorticity 

In most of this dissertation, the analysis will closely examine the dynamics of vorticity. 

Not only axe the dynamics of absolute vorticity mathematically convenient to analyze, 

but the amount of absolute vorticity directly addresses the i^ue of the strength of the 

circulation. Of course, vorticity is expected to play an important role in a rapidly- 

rotating fluid. 

Collider a primarily horizontal time-mean circulation in a closed basin. Suppose 

that there are no source or sinks of mass and that the fluid is incompressible. Then, 

the depth-integrated transport streamfimction will form nested circles of circulation. 

The trat^port around each extremum of the streamfimction is governed by the magni- 

tude of the extremum. What sets the magnitude of these extrema? Since the stream- 

function is set to zero on the boundary, it wiU be the gradient of the streamfimction 

(not coincidentally, the gradient of the streamfimction is the depth-integrated veloc- 

ity).  By integrating the relative vorticity within a particular streamline and using 
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the divergence theorem, we find 

/dl      ~      /dl (1.15) 

That is, the average gradient of the streamfunction across a particular streamhne is 

the amount of relative vorticity contained within that streamline per unit streamline 

length. 

Thus, if the wind input inside of a particular streamhne is allowed to build, the 

gradient of the streamfunction will increase and the circulation strength will increase. 

Likewise, we can consider the effect of vorticity trapped between two streamlines. 

If streamline 2 is nested inside streamhne 1, then integrating the vorticity over the 

area between the streamhnes, we find 

ill V^^dAI = ||u • dl - |u • dl| = I < tZ2 > L2- < «i > Lr\. (1.16) 

The angle brackets denote the average value of the velocity around that streamline 

and Li and I2 are the lengths of each streamhne.^ So, if vorticity builds up in the 

region between two streamlines without changing the position of the streamhnes, 

the difference in average velocity around the streamhnes increases. Thus, if vorticity 

builds up between two streamhnes, the flow around the inner nested streamlines moves 

faster and faster. It is similar reasoning which gives the circulation, T, its name. 

r = II VVdA = |u-dl. (1.17) 

So, it is clear that the question of what controls the circulation strength can be 

put in terms of where the vorticity tends to pile up and how it is transported. 

The /?-flux of vorticity is always in the east-west direction, and the advective flux 

by the mean flow of time-mean relative vorticity is along the direction of the time- 

^Absolute values are used to eliminate the complications of considering sign conventions and 
vorticity of either sign. 
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mean velocity. In chapter 2, it is demonstrated that neither of these fluxes can carry a 

net flux of vorticity across a time-mean streamUne. In the homogeneoiK model, only 

the frictional fluxes and the eddy fluxes (that is, the advective flux of perturbation 

relative vorticity by the perturbation velocity) can carry vorticity across time-mean 

streamlines. 

Therefore, the story of what controls the circulation strength is the story of how 

the frictional fluxes and the eddy fluxes can remove the vorticity input by the wind 

from within closed time-mean streamlines. A result which has a important impact 

on the dynamics of the homogeneous model is that the r^olved eddies in this model 

cannot destroy vorticity or remove it from the basin as the eddy flux must vanish at 

impermeable boundaries. Thi;^, the interpretation of what friction parameterizes in 

this model needs revkion from the ideas presented above. 

Internal Cancellation 

A different consideration in the control of the circulation strength is what happens 

when the wind's vorticity input is not of a single sign. If the wind provides positive 

vorticity in one region and negative vorticity in another, then internal cancellation 

of the vorticity could occur if the fluid arrange itself to communicate between these 

regions. This question has been addressed by many previous authors (for example, 

Harrison and Holland (1981), Marshall (1984), and Lozier and Riser (1990)). 

Marehall (1984) suggests that one should not consider a single gyre, but two 

rotating in opposite directions, representing the sub-polar and subtropical gyres. This 

presents the possibiHty of internal cancellation of the wind's vorticity input. By inter- 

gyre vorticity exchange, the mean flow or eddies could ease the burden on the friction 

to remove the vorticity input by the wind. Chapter 4 will deal with this issue in 

detail. 
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1.2    Dissertation Goals and Choice of Model 

In lerley and Sheremet (1995) it was suggested that the circulation 

does not, nor should it, saturate in the limit of vanishing lateral viscosity. 

The role of instabihty is simply to retard the increase in recirculation be- 

yond realistic values. Barotropic instability alone, we argue, is insufficient 

to retard the increase in recirculation beyond realistic values. Barochnic 

mstability and internal gravity waves are obvious candidates for future 

investigation. 

-Sheremet et al. (1997) 

The goal of this dissertation is to address the reasons why the wind-driven circulation 

strength is what it is, and to describe some of the processes involved. 

In order to address this goal, numerical models were developed. The primary 

model, which integrates the time-dependent homogeneous model (equation 1.1), was 

chosen for a number of reasons. What makes the model used here unique is that the 

viscosity is increased as the eastern and western boundaries are approached. 

First, the model ties neatly into the tradition of models of westward intensification. 

Only in the spatial variations of viscosity does it vary from these models, so many of 

the lessons learned apply directly. 

Second, the model is easily and efficiently implemented numerically. The only real 

difficulty numerically is accurately representing the derivatives necessary to evaluate 

the friction. As the viscosity decreases, the gradients become very large so that 

friction remains part of the solution. These gradients require very fine horizontal 

resolution as the viscosity decreases. However, this constraint is present in any high 

Reynolds number calculation, so common practices such as those given in Orszag and 

IsraeH (1974) can be adapted. 

Third, the vorticity dynamics of the model are simple. As mentioned, only eddy 

fluxes and frictional fluxes can carry vorticity across streamHnes of the mean flow. 
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Because the depth of the model is fixed, only absolute vorticity need be considered. 

Fourth, the model possesses few parameters, so a large range of the possible per- 

turbations can be explored. This is the driving idea behmd what is likely the weakest 

point of the model: neglect of vertical and density structure, including the important 

effects of topography. 

If an omnipotent being were to study what controlled the strength of the ocean 

circulation, her model of the ocean would solve the full three dimensional Navier- 

Stokes' equations at any resolution desired. It would have a divereity of phenomena 

and boxmdaries which are Mke those in the real ocean-rough-but adequately r^olve 

the pockets of fluid contained in the nooks and cranni^ of the rough topography and 

coastlines. Potentially important effects, such as the time-dependence of the winds 

and the astronomical forcing of the tid^, would be included. However, it would take 

the intellect of an omniscient to understand the results of such a model. 

Instead, given the hmited resources of computational power and finite intellect, 

the only course is to simphfy as much as possible without neglecting the critical 

feature which perform the control of the circulation strength. So, I have chosen the 

homogeneous model with boundary-enhanced viscosity. 

This model is intended to represent the same idealized wind-driven circulation 

envisioned by Storamel and Munk, and makes similar approximations with one ex- 

ception. As mentioned above in section 1.1.3, the eddies present in this model cannot 

remove vorticity from the basin. This is quite tmlike the eddies, turbulence and waves 

operating at small scales in the ocean. There are many phenomena which can remove 

vorticity firom the circulation near the boundaries or which will certamly strongly 

affect the eddy field only near the boundaries. Prime examples are bottom pressure 

interaction with topography (as recently proposed by Hugh^ and De Cuevas (2001)), 

eddy generation at a sloping bottom (as proposed by Hallberg and Rhines (2000)), 

and the breaking of internal gravity waves near topography. 
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The homogeneous model is so simple, with its 2-dimensional circulation without 

topography or sloping boundaries, that the friction must play a dual role. It must 

represent both the eddy viscosity, i.e., the random mixing of the mean flow by unre- 

solved eddies, and the removal of vorticity from the basin by all processes capable of 

performing this removal. The friction parameterizes the mixing by eddies by diffusing 

vorticity in the basin interior. The friction parameterizes the effects of interaction 

with the boundaries as it is the only mechanism for removal of vorticity from the 

basin. Furthermore, the use of friction requires more boundary conditions and tends 

to result in frictional boundary layers. In the homogeneous model, these effects of 

friction are parameterizations of the interaction of the large-scale flow in the real 

ocean with the boxmdary. 

However, the use of a constant viscosity tacitly assumes constant intensity of the 

unresolved phenomena whose effects on the large scale circulation are parameterized 

by the friction. Clearly, since the fnction must represent completely different phe- 

nomena near the boundary than it does in the basin interior, it is unfair to expect 

these processes to parameterize easily as a constant viscosity. Moreover, because of 

the simple topography and physics of the homogeneous model, the only part of the 

eddy viscosity which will become expUcitly resolved as the Reynolds number increases 

are the barotropic eddies. All other unresolved parameterized phenomena will remain 

impHcit in this model. 

It is obviously true that the results here would be more convincing were the 

boundary processes resolved rather than parameterized by an increased viscosity. 

This dissertation is intended only as a flrst step to point out the importance of these 

processes and to determine their effect on the interior circulation. Later investigations 

can determine the precise nature of these phenomena. Also, once the effects on the 

interior are established it is no longer necessary to resolve the entire ocean basin, 

regional models can be employed to save computation. 
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_v. 

There is a significant omifeion of physics from this model which deserves mention 

here. The model is barotropic, and therefore has no baroclinic effects whatever. How- 

ever, so long as the vertical structure is divfeible into horizontal layere, the absolute 

vorticity budget still must be satisfied within each layer (as shown by the imperme- 

abihty theorem of Haynes and Mclntyre (1987)). This is perhaps related to the result 

that some quasigeostrophic baroclinic modeb have been observed to be inertially- 

dominated just as the homogeneous model K sometimes (for example, Holland and 

Lm (1975)). Thas, the addition of multiple layers will produce additional sources of 

variabihty (gravity wav^ and barocHnic instabihty for example) but will not affect 

the fundamental problem of the removal of vorticity. The question of what changes 

would occur were vertical structure introduced into this model is quite interesting. 

Even the incli^ion of variations in depth in a barotropic model will have significant 

effects on the eddy field (as shown, for example, by Becker and Salmon (1997)). 

Another perhaps significant difference between the eddy field of a barotropic model 

and that of a baroclinic model is the way that turbulent energy changes scale. As 

pointed out by Batchelor (1969) and later extended to the ^-plane by Rhines (1975), 

the dynamics of two-dimei^ional (or barotropic) homogeneous turbulence are very 

different from that of three-dimensional (or barocKnic) homogeneous turbulence. In 

particular, the conservation of vorticity results in energy cascading to larger scales 

rather than to smaUer. One could argue that inertial-domination is a natural result 

of this cascade to large scales. However, th^e results are for freely-evolving homo- 

geneous turbulence, not forced-dissipative turbulence in the presence of a structured 

mean field. As shown by Smith and VaUis (2001), Smith and Valhs (2002), Smith 

et al. (2002), and Arbic and Flierl (2003) the forced-dissipative case is quite differ- 

ent from the freely-evolving case, and the presence of structure greatly changes the 

character of the mixing. As these calculations aren't remotely isotropic, the impact 

of mean flow structure is massive. Furthermore, the forcing here is at the largest 

scale, the basin scale, and therefore the cascade cannot proceed further in that direc- 
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tion. Thus, it is difficult to make a direct connection between the results of Batchelor 

(1969) and Rhines (1975) and the results presented here. Indubitably, significant dif- 

ferences in the behavior of the eddy field would result were baroclinic effects added 

to the calculations here. 

My approach is to address the barotropic model first, because its physics will re- 

semble those of every layer in a layer model, although the modes of instability will 

be lacking. Only after this model is weU-understood can the additional complexities 

of vertical structure be addressed. In this dissertation, it wiU become clear that even 

in the single-layer case, the physics are complex and once misunderstood. Including 

more layers and barocUnic instability will undoubtedly add interesting and important 

changes to the calculations. I expect the primary changes to be that the new mecha- 

nisms of instabihty are hkely to produce more eddies and to produce them in different 

locations, and these eddies will transfer energy quite differently than barotropic ed- 

dies do. Also, later in the dissertation I speculate that profound effects may be 

produced if the vertical layers do not reach the boundary and end at the surface of 

the ocean. In this case, the absolute vorticity budget can not extend all of the way to 

the basin boundary Because of the limited scope of this dissertation, the intriguing 

complications of vertical structure must remain the subject of future research. 

1.2.1    Definition of Eddy and Mean 

To accentuate the difference between steady-state and time-dependent calculations, 

I will almost always use the term eddy to refer to time-dependent motions of short 

time scale. Often, they will be the perturbation from a longer time-mean equiUbrium. 

The precise meaning of the term eddy has consequences for most of the results in this 

dissertation. 

An additional reason for this choice of definition of eddy is in comparison to data. 

Most of the information about the form of the wind-driven gyres is derived firom 

observations at sea of density used to infer geostrophic velocities and surface drift. In 
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both cas^, synoptic observation is rarely possible. Thus, what is observed, not by a 

single survey, but by repeat observations of the sane location is the Eulerian mean 

circulation. It was the observation of the Eulerian mean circulation which impired 

Stommel to propose Ms theory of westward intensification. 

Because these observations are what inspired the formulation of the steady homo- 

geneous models used to study w^tern intensification, the Eulerian mean is the most 

natural representation of the circulation in this case. The complementary definition 

of eddy as a perturbation from this mean follows. 

In the condition, I have a few further remarks on the choice of the definition of 

eddy. 

1.2.2    Summary of the Chapters 

Chapter 2 introduces the single-gyre homogeneous model with boundary-enhanced 

firiction in detail, and giv^ the primary results regarding control of the circulation 

strength. The primary result of the model calculations k that by increasing the 

viscosity in a small region very close to the boundary, the circulation strength of 

the entire basin can be controlled. Detailed anal^is of the possible mechanisms of 

vorticity transport and removal in the model are analyzed in swtion 2.2 and diag- 

nostics are proposed. The flux of vorticity is then analyzed in detail, and a simple 

test is found which determines whether the equihbrium will be western-intensified or 

inertially-dominated. 

Because the model presented in Chapter 2 is able to be nm at a much lower 

viscosity in the interior while remaining western-intemified, it has some extraordinary 

dynamics. Many of these dynamics are introduced and discussed in Chapter 3. Also, 

discussions of the effects of bottom friction and slip boundary are presented in Chapter 

3, because these results are helpful in understanding the results of Chapter 4. 

In Chapter 4, a second wind-driven gyre is added to consider the effects of doing 

so. It is demonstrated that with slip boundary conditions with two equal and opposite 
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gyres, the results resemble those of Marshall (1984) with an important inter-gyre eddy 

flux. However, the inter-gyre vorticity flux is not as important in the case with either 

no-slip boundary conditions or gyres of unequal strength. Nonetheless, the circulation 

strength is reduced by adding the second gyre. Chapter 4 then proceeds with a review 

of different hypotheses of what mechanism reduces the circulation strength with the 

addition a second gyre. The most Ukely hypothesis is that the structure of the eddies 

which cannot form in the single-gyre but can form on the jet dividing the gyres 

(primarily sinuous modes) effect an efficient transport of vorticity to the boundary. 
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Chapter 2 

Control of the Wind-Driven Single 

Gyre by Eddy Fluxes of Vorticity 

to a Region of Enhanced Viscosity 

It is unclear what controls the strength of the wind-driven ocean circulation. IVa- 

ditional analytic models of the ocean circulation have reUed on an interior solution 

in Sverdrup balance, attached to a western boundary current which is expected to 

close the flow of mass and remove the input of vorticity and energy from the wind. 

The Sverdrup interior sets the mass flux, and the western boundary current plays a 

pa^ive role. 

However, ultimately there must be a balance between forcing and dissipation. 

The wind is a constant source of energy and vorticity to the ocean. If there is not a 

mechanism for equilibration, it is obvious that what controls the circulation strength 

is unknown. This is the danger of Sverdrup^s solution. It is neat, it agrete fairly well 

with existing observations, and it is b^ed upon physical principles. However, since 

much of the physics is neglected a priori in this model, it can be only a part of a full 

understanding of what controls the circulation strength. 

Veronis (1966b) demonstrated that as inertia becomes strong relative to dissi- 
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pation\ the inertial terms become dominant in regions outside the boundary cur- 

rent. More recent work has demonstrated that these ineHially-dominated solutions 

are ubiquitous in the wind-driven single-gyre ocean model with constant viscosity: 

time-dependent and steady-state calculations with differing boundary conditions all 

demonstrate this behavior (lerley and Sheremet (1995), Kamenkovich et al. (1995), 

Sheremet et al. (1995), Sheremet et al. (1997)). These inertially-dominated solutions 

occur at modest inertia to friction ratios, leading one to wonder what occurs in the 

ocean where the friction is considered to be much smaller than the inertia, yet the 

ocean is strongly western-intensified with inertial western boundary currents and a 

relatively non-inertial interior. 

The resolution of the dilemma is found by examining the meaning of friction in 

these models. The viscosity used is not intended to represent the action of molecular 

viscosity; it is many orders of magnitude too large. Obviously the friction used is a 

parameterization of unresolved processes. 

The use of a constant viscosity tacitly assumes that all the unresolved phenomena 

whose effects on the large scale circulation are parameterized by the friction can be 

treated equally The assumption of constant viscosity in the unresolved processes is a 

strong and unreahstic constraint on the activity of the parameterized processes. The 

activity of small-scale processes in ocean observations is extremely diverse. Observa- 

tions of relative dispersion of subsurface floats by LaCasce and Bower (2000) indicate 

approximately an order of magnitude variation in turbulent diffusivity Additionally 

the friction in simple models such as the homogeneous model represents not only the 

sub-grid-scale eddies, but also the interaction of the large-scale with the boundaries. 

It is overly optimistic to expect the effects of unresolved eddies and the effects of the 

interaction of the flow with topography to parameterize identicaUy as a friction with 

constant viscosity. 

Often, the eddy viscosity is considered as a replacement for the effects of eddies 

^Veronis used bottom friction with a constant drag coefficient. 

46 



only. A large Reynolds number solution was sought in these simple modek because 

it was supposed that as the friction decreased, there would be an increase in mixing 

by increasingly energetic, yet well-resolved, eddies that would replace the decreased 

diffusion from the friction. Th^e eddi^ would naturally be formed from the insta- 

bilities that occurred with increasing r^olution and decreasing diffusive parametriza- 

tion. More recently, the role of eddy viscosity (and eddy hyper-viscosity) has been 

d^cribed as merely the mechanfem to set the cutoff scale of the enstrophy cascade 

(see, for example, Holland (1978), Marshall and Shutts (1981)), and therefore, less 

viscosity would only r^ult in more small-scale enstrophy. This view neglects the 

important role of the frictional terms near the boundary. As demonstrated by fig- 

ure 1-3, this understanding of what eddy viscosity represents is flawed. The idea that 

the eddi^ would be able to replace the friction obviously neglects the role of friction 

in representing interaction with the bomidary by processes which will not increase 

with increasing resolution and increasing Reynolds number, at least not in a model 

without topography^. 

This chapter provide an idealized framework for understanding how and where 

the unresolved processes in a simple barotropic model can and cannot replace the 

action of viscous terms. 

The experiments herein attempt to verify whether the eddy vkcosity can be re- 

placed by the action of eddies in the basin interior, although not near the basin 

boundaries. Presumably, there are additional physical interactions near the bound- 

aries which cannot be easily included without including additional physics {e.g., to- 

pography, tidal dissipation, separated boundary layers, etc.). The novel approach 

med m this chapter is to try to treat these boundary phenomena simply and see the 

result on the basin-wide cfrculation. It will be shown that while the character of the 

eddies change as the viscosity is lowered in the basin interior, so long as a suffi- 

ciently strong frictional layer exists near the boundary, the mean flow is qualitatively 

^Or even a model with overly smooth topography! 
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unchanged. 

In this chapter, an ideaUzed model of a northern subtropical gyre is used which 

differs from the traditional model in that it has increased viscosity near the boundaries 

to the east and west. This is intended to represent the increased activity due to 

unresolved boundary physics, and there are also dynamical reasons for the choice. 

The primary dynamical reason, which will be derived in this chapter, is that eddies 

cannot remove vorticity from the basin; they merely rearrange it. In the model used 

here, only the friction can remove vorticity from the basin, and increasing the viscosity 

near the boundary is a simple representation of the unresolved physics there which 

should allow vorticity to be removed. 

It is important to keep in mind that the enhanced viscosity is not a proposal for a 

viscous region near the boundaries of the ocean. It is only a very simple parameteri- 

zation of boundary processes, some which might be described as viscous and some of 

which are certainly not, such as lee wave generation. 

Of course, it is Hkely that a more realistic parameterization would have viscosity 

or other operators which are dynamically-variable as well as spatially-variable. For 

example, one might use a viscosity which grows with the shear of the mean flow or 

a quadratic bottom drag as a dynamically-dependent friction. Because most of the 

study will be of the time-mean circulation, where one might expect a dynamically- 

variable viscosity to be relatively stable, and because of the demands of simpKcity, 

only spatial variations in viscosity are considered here. Furthermore, because many 

of these calculations tend to be strongly western-intensified, choosing a dynamically- 

variable friction may not be significantly different in gross behavior from assigning 

a higher value of viscosity near the western boundary. FinaUy, the parameterization 

used here makes it easy to test whether it is possible to have a western-intensified 

calculation with a wider inertial boundary width than frictional boundary width. 

The simplicity of having only one type of friction motivates the choice of using 

only lateral friction with variable viscosity   Obviously some aspects of the results 
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found here will not apply when a more realistic treatment is possible. However, the 

boundary-enhanced viscc^ity acts primarily as a sink of vorticity and a generator of 

eddies which are properties Ukely to be shared by a more reahstic model, it is hoped 

that many of the results presented here will be robust. 

This chapter is organized in sections. In section 2.1, the specifics of the model 

used are presented. Section 2.2 pr^ents diagnostic and analytic constructs that are 

used in understanding the behavior of the model. In section 2.3, the results of the 

numerical calculations are presented. In the final section, the imphcations of these 

results are discussed. 

2.1    Boundary-Enhanced Viscosity in the Homoge- 

neous Model 

The model used here is the rigid hd, homogeneous-density, single-gyre ocean model 

on a ^-plane with spatially-varying viscosity Because of its relative simplicity and 

ease of implementation, the lateral friction used is a horizontal diffusion of relative 

vorticity (V • 5%VC) with a spatially-varying horizontal eddy viscosity (Austausch 

coefficient). The viscosity is scalar and varies only in the zonal direction (i.e., per- 

pendicular to the western boundary) in these calculations. This, together with the 

/3-plane approximation, guarantees that the friction used is the same as if a diffusion 

of absolute vorticity were used (as V-SlViC+0y) is the same as V-Sl^VC when 6^ is 

a function of x only). Other possible choices of lateral friction operator are available 

such as a diffusion of momentum {(^ - ^) [sUQ - 0)] + 4^| [31,^4)' 

In this section, a bottom friction with a constant and spatially-independent decay 

time also appears to demonstrate the role of bottom friction in the analysis, although 

results with bottom friction are not presented until the next chapter. 

^Another, more dubious choke also not used here is if^V^C- This form is peculiar because it 
violates the assumption that the Motional flux should be proportional to the vorticity gradient. 
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The model solves the following dimensionless barotropic vorticity equation (equa- 

tion 2.1) and then inverts the Poisson equation (equation 2.2) to find the streamfunc- 

tion at each time step: 

DC     dxp 
Di'^d^^   -sm(7ry) + V-<5^VC-(JsC, (2.1) 

C   =   V^V-, (2.2) 

Dt dt      ^[dxdy     dydxj' 

The dimensionless variables are related to dimensional ones in the following way 

(asterisks denote dimensional variables): 

U = ji,x^ = Lx,y^ = Ly,WE* = -WEsin{7ry),ip, = ^^^f^ip, 

^2 =   ^Efo    13    _  Aw    r    _   r 
"I — 02DL2 '"M = 0&,(>S = 01, 

where AH is the Austausch coefficient in the horizontal direction and r is the bottom 

friction decay rate. L is the horizontal basin dimension. D is the basin depth (or layer 

depth). The variable C represents relative vorticity, while V is the streamfunction of 

the velocity {u = -^,v= g). The streamfunction x/; is scaled so that the Sverdrup 

solution would have a maximum of ^ = 1 were it to fill the dimensions of the basin. 

The /3-plane approximation is used, so the value of the CorioHs parameter at the 

center of the domain is /o and its meridional derivative is /?. 

The forcing is given by WE = -sin(7ry), which is a negative input of vorticity 

throughout the basin. This form of the wind forcing can be found in one of two ways. 

First, it can be found by deriving the barotropic vorticity equation from momentum 

equations forced by a body force proportional to - cos(7ry), which roughly represents 

the tropical easterlies at t/ = 0 and the westerlies at y = 1. Second, it can be derived 

as the vorticity flux from an Ekman layer forced by the same wind stress whose 
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pumping supplies the vorticity by vortex stretching. In either case, it is the curl of 

the wind stress which appears in the barotropic vorticity equation. 

This single-gyre wind forcing is intended to roughly model a northern hemisphere 

sub-tropical gjrre, so the poleward direction k the direction of increasing y, or north. 

In Chapter 4, a second gyre with vorticity input of opposite sign will be added, 

roughly representing a subpolar gyre. Because the goal of this chapter is to study the 

removal of vorticity by friction, use of a single-gyre is preferable, because there is a 

net input of vorticity, all of which most be removed by friction. In the double-gyre, 

there is no net input of vorticity, so purely internal mechanisms might control the 

circulation strength. I will return to this issue in Chapter 4. 

The boundaries are located at i = 0 and a; = 1 in the zonal direction and at t/ = 0 

and y = 1 in the meridional direction. The boxmdaries are impermeable, which is 

implemented by setting ^ = 0 for solutions of equation 2.2, an appropriate method for 

a constant depth model. The lateral friction in equation 2.1 also require higher-order 

boundary conditions. In thk chapter, the eastern and western boundaries have the no- 

shp boundary condition (^ = 0), while the other boundaries have slip (C = 0). For 

simpHcity these calculations will be referred to as no-slip boundary calculations. In 

subsequent chapters, slip calculations will performed where the boundary conditions 

on all four boundaries will be shp (C = 0). 

These frictional boundary conditions were chosen becai^e the no-slip boundary 

condition is good for generating instabilities at the western boundary and the slip 

boundary condition at the north is more easily compared to the two-gyre and double- 

gyre solutions presented in Chapter 4. Thus the shp boundary condition is intended 

to roughly represent the fluid boimdari^ while the no-shp boundary conditions are 

intended to roughly represent the solid boundaries. A recurrmg theme of this disser- 

tation is that this idealization is often overly simple. 

The parameters, Sj, 5M, and 5s, would be the Charney (1955), Munk (1950), and 

Stommel (1948) boundary layer scales, respectively, if 5M were corstant in a basin of 
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unit width. However, in these calculations, the viscosity, and hence 5M, is allowed to 

vary. As the parameter 5]^ is proportional to the dimensional viscosity and plays a 

similar role in the nondimensional equations but has different units than the viscosity, 

it will be called the viscosity parameter herein. 

The interpretation of (5^ as a boundary layer width will no longer apply directly 

if 5M varies. While the solution to the Munk problem with variable lateral viscosity 

(neglecting advection of relative vorticity) is not analyticaUy tractable, the Stommel 

problem with a bottom drag coefficient exponentially decaying away from the coast 

is. In that case, the boundary layer scale changes from 5s to 5^ H^slh) for a bottom 

drag coefficient which is <Jsexp(-a;/<5d) with the boundary located where x is zero. 

For the calculations presented here, the value of 5i is fixed at 0.02. The value of 

5M varies across the different calculations and throughout the basin. The Reynolds 

number of the boundary layer for a given viscosity is a useful measure for comparing 

different runs; it is defined here as <5f/5|^. 

When the viscosity is allowed to vary, the boundary-layer Reynolds number based 

on the interior viscosity (Re(int) = 5]/[5M{int)f) and the boundary-layer Reynolds 

number based on the viscosity at the eastern aoid western boundaries (Re(bdy) = 

5y[5M{hdy)f) are used as constant parameters. The viscosity parameter is 

51  =  s] 

5d   = 

(2.3) RiM"" (MHd^ - R^) ('~'''' ^ '-'"''''') 
5i 

Re(bdy) and Re(int) are fixed. Thus, the viscosity parameter decays exponentially 

from the boundary value to the interior value with a decay scale equal to the frictional 

sublayer scale, 5^. This functional form was chosen for simplicity and smoothness, 

rather than from a rationaUzed parameterization of a particular physical process. 

The first advantage of choosing the frictional sublayer scale as the decay scale is 

shown by consideration of the balance of terms in the sublayer. The frictional sublayer 
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scale is the scale found by hypothesizing a balance between the mean advection and 

the frictional terms (see, for example, Pedlosky (1996)). This proposed balance is 

'{dxdydx^     dydxy     ^dx^^    dx   dx^' ^^"^^ 

If the scale of the velocities is chosen to be that of the inertial boundary layer (^ 

on the order of Sj^ and ^ with a magnitude near -1), then the scale over which 

these velociti^ mi^t vary in order for this balance to be achieved is the frictional 

sublayer scale given above. The advantage of choosing the frictional sublayer scale as 

the decay scale for the viscosity parameter k that both terms on the right hand side 

will have the same scale. Thi^, the width of the sublayer will be relatively unchanged 

by a change in Re(bdy). 

The second advantage of choosing the frictional sublayer as the scale of the vis- 

ccBity parameter's decay is that so long as Re(int) is greater than one, the inertial 

boundary layer scale will be larger than the frictional sublayer. Therefore, in all of 

the calculations with Re(int) greater than one, the outer part of the inertial bound- 

ary layer will not pass through the enhanced viscosity Therefore, relatively inviscid 

dynamics must occxir in that region. 

The frictional sublayer is a theoretical comtruct which is useful for thinking about 

the way in which the frictional terms always become important near the boundaries. 

Even if the viscosity is extremely small, becai^e the frictional boundary conditions 

must be satisfied this layer will always exist, although its scale will shrink with the 

viscosity. However, in a forced-dissipative problem this thin boundary layer almost 

always plays a critical role as there is no other region where the effects of forcing can 

be balanced. We shall see that this is also the case in the homogeneous single-gyre. 

However, recall that the boundary-enhanced viscosity presented here is only a 

parameterization of boundary processes. The choice of an exponentially-decaying 

viscosity with a sublayer decay scale is a choice. Many of the results in this model 
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will be applicable even if the boundary processes parameterized by this viscosity do 

not decay with this scale. This scale is chosen only to emphasize that the viscosity 

is being raised only within a region which was already strongly influenced by friction 

in this model. 

Because the meridional extent of eddies is not the basin scale, their scahng is not 

the same as that for the mean flow. Thus, the scale of the eddies' frictional sublayer 

is different from that of the mean flow. It is likely that the viscosity's effect on the 

eddies will change differently than its effect on the mean flow changes. This is another 

highly desirable feature of our choice of parameterization of boundary processes. 

The viscosity is chosen to vary only in x for two reasons. The first is that the 

eastern and western boundaries are intended to be ideaUzed solid boundaries, hence 

the choice of no-slip boundaries there. Thus, the unresolved but presumably en- 

hanced boundary-related physical processes the higher viscosity is intended to repre- 

sent should be present there. Second, if the viscosity varies only in x, then the choice 

between a friction term which parameterizes sub-grid-scale phenomena as a diffusion 

of absolute vori;icity and one which diffuses relative vorticity are identical (again as 

V • (^^V(C + /?y) is the same as V • (5^VC when b\^ is a function of x only). 

A numerical model was created to solve equations 2.1 and 2.2 with the viscosity 

parameter given by equation 2.3. Because of the difiiculties in accurately differen- 

tiating the streamfunction four times as required to evaluate the friction term in 

equation 2.1, a Chebyshev pseudo-spectral method is used (see, for example, Got- 

tUeb and Orszag (1981) and Boyd (1989)). The details of this model are presented 

in Appendix C. 

The range of bi and bu used is governed by both numerical constraints and an 

attempt to reach the correct parameter range. The value of 5/ is 0.02 in all of the 

calculations presented here. The maximum interior Reynolds number with reason- 

able accuracy at the resolution used (256th-order polynomials) was 9 for this value 

of bi. The accuracy at this resolution was confirmed both by spectral decay of the 
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Chebyshev coefficients of relative vorticity (for all Iteyiiolds numbers t^ed) and by 

comparison with higher and lower resolution calculations (with the parameter setting: 

Re(bdy)=3, Re(int)=3). Although the runs at different r^olutions differed signifi- 

cantly in the details of the eddy field, the time-mean circulation and magnitude of 

kinetic energies agreed. Additional discu^ion of error can be found in section C,5. 

The value of Si is physicaUy relevant and Ues in the range used in similar calcu- 

lations, lerley and Sheremet (1995) me values surrounding 0.02, Kamenkovich et al. 

(1995) use 0.01, and Bryan (1963) advocates a range of values from 0.03 to 0.005 

depending on the depth of the moving layer and basin dimension. The value of 0.02 

med here corresponds to a 200 km inertial boundary current scale in a 10000 km 

basin with a velocity scale of 1.6 m/s (with ^ = 4 • 10-"(ms)-^). 

Although proper interpretation of eddy viscosity is model-dependent and therefore 

eddy viscc»ity is inherently difficult to measure, the value of 5M used here is probably 

too large. The maximum value of the Reynolds number here is 9, while estimates of a 

more appropriate eddy viscosity place the appropriate Reynol<k number in the range 

of 100-1000 (Pedlosky (1987), LaCasce and Bower (2000)). Rather than increasing 

the Reynolds number farther in this overly-simplified model, however, it is hkely more 

important to include additional physics. It shown below, however, that the value of 

5M is small enough to ensure that the frictional sublayer is clearly smaller than the 

inertial boundary layer, which is the desired physical criterion. 

2.2    Analysis 

In this section, some analytic results are presented which will be used throughout 

the di^ertation. First, the vorticity equation will be written m flux form which 

imphes that vorticity cannot be locally d^troyed and therefore must be carried to 

the boundary to be removed. Second, the energy equation will be presented and the 

differences between it and the vorticity equation will be presented. Finally, budgets 
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over areas of vorticity and energy will be presented. Two regions will receive particular 

attention, the area within a mean streamline and the basin as a whole. 

The barotropic vorticity equation can be written in flux form, where every term is 

a conservative flux of vorticity This is also true for the Reynolds-averaged barotropic 

vorticity equation. 

^ + ^■{St^p + 5juC-6lV(: + 5sV1P)   =   -sin(7ry), (2.6) 
fir 
^ + V-(xV^ + ,j2-^+<52p^-4VC + <5sV^)   =   -sin(7ry). (2.7) 

The overbar denotes a time-mean over times long compared to the eddy time scales, 

and primes denote fluctuations from the mean."* 

Every term in equation 2.7 is a flux of vorticity except the wind-stress source. 

Because these terms are fluxes, the vorticity input by the wind cannot be locally 

removed. Actually, the wind source of vorticity can also always be written as a flux 

rather than a source, as it is the curl of the wind stress itself. The time-derivative 

of vorticity can also be written as a flux if helpful. The result that all of the terms 

in the equation are fluxes is the impermeabiHty theorem for this system (Haynes 

and Mclntyre (1987), Marshall and Nurser (1992)). For the single-gyre, the wind's 

vorticity input is negative everywhere. Therefore, no amount of internal mixing of 

the vorticity can cause internal canceUation; the vorticity must be fluxed from the 

input region out of the basin. As is demonstrated in equation 2.7, the flux of vorticity 

can be carried by the /?-term, the mean advection of mean relative vorticity, the eddy 

advection of eddy relative vorticity, bottom frictional flux, or by a lateral frictional 

flux. In this dissertation, these terms will be called the /?-flux, the mean flux, the 

Reynolds flux, and the firictional flux of vorticity respectively The fluxes that will be 

This form of the equations is certainly valid when the value of 5s is constant. However just 
as using a lateral friction which diffuses momentum rather than vorticity yields a different'form 
for the lateral friction operator, the form of the bottom friction will vary depending on whether it 
is intended to be a bottom drag on momentum, a flux of vorticity, an Ekman layer on the ocean 
bottom, etc. 
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most often discussed in the Reynolds-averaged equation are: 

p- - flux = ^x, 

mean - - flux = sM, 
eddy- - flux = Sjn'C, 

bottom - - flux = SsVii, 

lateral - - flux — -sh^c 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Unlike vorticity, the energy can be locally dissipated. The equation for the kinetic 

energy of the mean flow (E = ^^2) can be constructed from the vorticity equation 2.6 

above by multiphcation by -^ and use of product rules for differentiation. 

9E     „ 
Dt -^^W + SJnE - ^x + #1,VC - SsV^ - SsiPu 

sh V^E- 
dx^ 

'ft 
By2 

2 

-2 

,^2 

^i) 
dxdy 

- 2SsE + i) sin(7ry).      (2.13) 

For the Reynolds-averaged version, mioltiply equation 2.7 by -t/;, producing 

at ^ ^ 

= sh 

+V • [5f u ■ Ft? - #1 u' • Wi)'] 
xy.\2 

V^^-(&)   -(f)   -2(Sf   -25sl + isin(.,) 
+5f(i^-V)-u. (2.14) 

The tern^ after the equal sign in this equation are local sinks and source of energy. 

All of the frictional terms in equation 2.14 are negative definite except for S%V^E 

which represents a smoothing of sharp energy gradients. The equivalent term does 

not appear as a source term in the energy equation if frictional diffusion of momentum 

rather than diffusion of relative vorticity is used. In that case, this term is a flux of 
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energy rather than a sink. However, in practice, this term is usually smaU when 

compared to the negative definite terms, and the sum of the frictional terms is always 

negative on integration over the basin (although it is sometimes locally a small positive 

quantity). 

The wind energy input term can be of either sign, and the amount of energy de- 

pends on the solution through multipHcation by ^ as the work done differs depending 

on the solution's ahgnment with the wind stress. Because of the variable nature of 

the energy source and the existence of local sources and sinks in the energy equation, 

the vorticity budget is a simpler tool for analysis of this model. Further discussion of 

the energetics of the model is presented in section 3.6. 

The integral of the vorticity equation within a mean streamline is useful in un- 

derstanding the role of eddy and frictional fluxes in this model. If the mean is taken 

over the entire time interval, then f vanishes. Using the divergence theorem and 

noting that the mean fluxes cancel out when integrating along a mean streamline, 

the following results for the area enclosed by the streamline where V = i^c- 

j>(^ + 6sVii- 4VC) ■Ms = - jj sm{iry)d^A. (2.15) 

Thus, the flux across mean streamhnes can only be carried by the friction or by the 

eddies. 

If the streamhne chosen is the one located at the boundary (V-c = 0), the basin- 

wide budget is produced. 

/ {5sVi} - 51,VX) ■ hds = --. (2.16) 

It is obvious from equation 2.16 that it is exceedingly difficult to reduce the viscosity 

at the boundary without affecting the mean flow. 

Equation 2.16 is the reason for this dissertation's emphasis on unresolved bound- 

58 



ary processes. Regardless of the model used, because the vorticity equation can be 

written in flux form, there mmt always be a process at the edg^ of the domain ca- 

pable of removing the vorticity. The model chosen here is enhanced viscosity at the 

boundary, which obviously reheves the strict nature of equation 2.16 which is evalu- 

ated using the value of the viscosity at the boundary only. By using a large vkcosity 

at the boundary, equation 2.16 can be satisfied and by sunultaneot^ely using a small 

interior viscosity equation 2.15 can be dominated by resolved eddies rather than by 

the parameterization. 

If the boundary condition is no-slip, then % Vf = 0, and neither bottom friction 

nor eddies can contribute to the basin-wide vorticity budget. For this reason, the 

bottom friction is not used for most of the calculations pr^ented in this chapter {Ss = 

0). Calculations with bottom friction are presented in the next chapter and reveal 

that adding bottom friction produced quahtatively different equilibrium solutions 

only when the bottom friction was strong enough to strongly reduce the presence of 

eddi^. 

The mean flow energy budget for the entire basin is obtained by integrating the 

energy equation. 

0 ^M V'E -^    fS^i'V 
%2 

,2:z\2 a^t^ 

+ 
■/■/ V" I V^^V       \dyy      ~\dxdy 
JJ {-2SsE + ;f (iFi? ■V)-u + 9sin(7ry)) dM 

dM 

(2.17) 

The energy in the mean flow can be removed by lateral or bottom Motion or by 

turbulent kinetic energy production. Unhke the vorticity budget, the energy budget 

does not obviously benefit from enhancing the viscosity in any particular region. 

2.2.1    Interpreting Eddy Flux Divergences 

In many of the figures in this dissertation, the emphasis is placed on the eddy flux 

divergences, not the fluxes themselves.   This is because the fluxes are not easily 
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determined at a particular location; the interpolation and statistical problems are 

challenging. Integrals of the flux divergence, however, have better statistical prop- 

erties as they are effectively averages over a large area, and it is much easier to do 

proper interpolation for fluxes out of areas of integration than to try to locate a par- 

ticular streamline and interpolate the fluxes across it. Also, much of the information 

contained in the flux field is not relevant to understanding the effects of the eddies 

on the mean flow. 

Only the divergences of the fluxes appear in the vorticity equation 2.6, and this 

is also true of the vorticity equation for the mean field (equation 2.7). Therefore, 

in determining the effects of the eddies on the mean flow, it is more important to 

determine the flux divergences than the fluxes themselves. 

However, it is often more physically intuitive to consider fluxes, or at least to 

connect the divergences to hypothetical fluxes which might be responsible for them. 

Figure 2-1 schematizes two methods which I found useful for converting between the 

fluxes and the flux divergences. These diagrams represent regions of integration of the 

flux divergence field. Upon integration over a region, the flux divergence is converted 

to an integral of the total flux out of that region. With a little practice, the result of 

these integrals becomes intuitive, and the flux divergence fleld can be more readily 

interpreted. 

Figure 2-la schematizes integration of the flux divergence field within time-mean 

streamhnes of the flow, as imagined in equation 2.15. If the mean streamfunction 

is relatively simple topologically, as are most of the single-gyre calculations then 

there is a region where the time-mean streamfunction is dominantly positive, and 

possibly a region where the streamfunction is negative. Within the positive region, 

the streamlines will largely be nested one within another, and Hkewise for the negative 

streamlines. 

Thus, it is sensible to integrate over the entire region where ^ exceeds a certain 

value when the streamfunction is positive. The arrows indicating the total flux into 
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the streamline located in the upper, unshaded portion of figure 2-la, which is obtained 

upon integrating the flux divergence within that streamline. If the streamhnes are 

neatly nested inside that streamhne, integrating within that streamline amounts to 

integration over the whole region where i exceeds its value on this streamline. As 

equation 2.15 demonstrate, in this model only eddy flux^ and frictional fluxes can 

have a total flux across a mean streamline. The arrows in this schematic are pointing 

inward because typically these fluxes converge to deposit positive vorticity in the 

region enclosed by a closed streamline which cancels the negative vorticity input by 

the wind. Equivalently, the fluxes can be thought of as outward fluxes of the negative 

vorticity input by the wind, because the flux of negative vorticity tends to diverge 

within the streamline. Therefore, by analyzing these flux^, we can determine how 

much of the wind input within this streamhne is carried out by the eddies and how 

much is carried out by the friction. 

Likewise, we can integrate over all regions where the streamfunction is less thaa a 

particular value. This is particularly ireful for negative values of the streamfunction. 

The arrows into of the shaded region enclosed by a mean streamhne in the lower part 

of figure 2-la schematize such an integration. 

Note that the arro-5^ are pointing inward here as well. There is a choice of con- 

vention imphed here which is used in this dissertation. The sign of the fluxes are 

interpreted as toward the boundary (that is, out of a closed streamline, not in), re- 

gardless of the sign of the streamfunction. Thus, these fluxes are inward, so they can 

balance the negative wind input within the mean streamline. This convention treats 

the negative and positive streamlines most sunply, because it is easy to imagine a 

budget of the wind input witMn a closed streamhne being balanced by the firictional 

and eddy fluxes across the streamhne. 

However, when the topology of the streamfunction is not simple some complica- 

tions arise. The primary example of this fe the # = 0 streamline. Because of the 

impermeability boundary condition, this streamline surrounds the entire basin, but it 
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also divides the regions of positive and negative streamfunction. We can generate at 

least three sensible calculations of the total flux across the ^ = 0 streamline. First, 

we could integrate over the whole basin. This would give the flux out of the basin, 

and it is useful for calculating the total vorticity budget of frictional removal and 

wind input described in equation 2.16. Second, if we calculate the flux by integrating 

the divergence over all regions whose streamfunction is greater than zero, a different 

result wiU be obtained. In this case, it would be the total flux out of all of the un- 

shaded regions in figure 2-la. For some of the streamline bounding this region this 

flux would be through the boundary, but in other areas it is into the shaded regions 

of negative streamfunction. Third, we could calculate the total flux out of the shaded 

regions. Some of this flux would be through the boundary and some would be into 

the unshaded regions. It should be clear that by cancellation along the shared bound- 

aries, the sum of the flux out of the shaded region and the flux out of the unshaded 

region will sum to be the flux out of the basin. Also, if the flux vanishes at the basin 

boundary as the eddy flux does, then each flux will have the same magnitude, that of 

the flux firom the shaded to the unshaded regions. This result is useful in section 3.3. 

A lesser problem exists when there are shaded regions separated from each other. 

Then, it will not be the flux out of a particular closed streamline which is calculated 

by integrating over the region where ^ is less than a particular value. Because of 

the topology of the time-mean streamfunctions in this chapter and the next, this 

is usually not a big problem, and typically these separated areas will be clumped 

together to yield the flux out of the combined region. 

Thus, the convention used in the figures displaying the flux across mean stream- 

lines is as foUows. For all regions where the mean streamfunction is positive, the 

fluxes are calculated by integrating the divergence over the region where ^ exceeds 

a certain value. Where the streamfunction is negative, the fluxes are calculated by 

integrating the divergence over the region where ^ is less than a certain value. At the 

zero streamline these fluxes will not agree as they are fluxes across different closed 
K 
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a. b. 

Figure 2-1: Schematics of regions of integration taeftal in converting from flux diver- 
gences to flux out of a particular region, (a) shows the fluxes out of mean streamlines 
(regions of negative streamfunction are shaded), and (b) shows the fluxes out of a 
box connected to the boundari^. The eddy flux convergence {-V ■ u^) is shaded 
beneath. 

loops of the ^ = 0 streamhne, but their sum will be the flux out of the basin. From 

equation 2.16, we expect that the sum of the eddy fluxes will be zero while the sum 

of the frictional flxixes will be the wind input. 

Figure 2-lb schematizes a different conversion from flux divergence to fluxes. 

The eddy flux convergences are shaded in this figure. If the flux convergences are 

integrated within this box, the total flux across the box's boundary inward will be 

obtained. As the eddy fltixes vanish at the boundaries, only the flux^ across the 

interior portion of the box where the arrows are need be comidered. Frictional fluxes 

do not automatically van^h at the boundary, so they must be analyzed point by 

point along the boundary to determine how much of the fltix remains in the basin 

and how much is transported out. In the figure, a small region of eddy vorticity flux 

convergence (light coloring) is inside the box. The convergence acts against the wind 

input, that is, the negative vorticity input of the wind is transferred to an outward 

eddy flux of negative vorticity there. Equivalently, a pc^itive eddy vorticity flux 

into the box results, which is indicated by the arrows. If the box were extended just 
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slightly more west and north, at x = 0.1 and y = 0.9, then a region of eddy divergence 

would be included. In this case, the eddy vorticity flux would be, on average, out of 

the box. 

Continuing in this manner, the time-mean transport of vorticity by the eddy field 

can be studied. Since the wind input is negative, it is helpful to think of the eddy 

fluxes trajisporting the wind input, which in the subtropical gyre provides negative 

vorticity. These fluxes' vorticity transport originates in the Ughtly shaded regions, 

where they draw off negative vorticity from the mean flow and they transport it to the 

darkly shaded regions, where they add negative vorticity to the mean flow. Note that 

the reason for considering the convergences is that the path which the eddy fluxes 

take may be circuitous or obscured by fluxes which do not interact locally with the 

mean flow, as the curl of the eddy fluxes is typically quite large. Only the divergent 

eddy fluxes interact with the mean flow, so directly examining the circuitous paths 

of the eddy fluxes can be misleading. However, the direct examination of the fluxes 

is rarely necessary since the eddy fluxes vanish at the basin boundary, so eventually 

the vorticity transported from a divergent region by eddy fluxes must end up being 

deposited in a convergent region. A useful analogy to the eddy fluxes of vorticity is 

the transport of a passenger-carrying train. To determine which stations will change 

in population and where crowds wiU form, one need only know where the train picks 

up and drops off passengers, not how many are on the train. 

It can be difiicult to determine exactly which divergent region is the source of a flux 

to a particular convergent region when there is more than one region of convergence 

and divergence. In this case a more careful study needs to be made. Often all of 

the fluxes-eddy, beta, mean, and frictional-must be considered. Study of integration 

and budgeting over different regions is required to decide where the fluxes originate 

and end. I generally have left the details of this analysis out of the discussion and 

mention the final results of the calculations in the text. 
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2.3    Computational Results 

The major computational results found with this model are pr^ented here as sub- 

section. The first subsection shows that increasing the vkcosity only within the 

frictional sublayer controls the overall circulation. In the second subsection, it te re- 

vealed that outside the frictional subla^r, the eddy flux of vorticity is respomible for 

decreasing the mean circulation. 

2.3.1    Control of Circulation Strength 

Figure 2-2 shows the time-mean streamfunction^ resulting from different values of 

Re(bdy) and Re(int). For a given Re(int), the circulation strength can be reduced 

by decreasing Re(bdy). As shown in the introduction, this is not true of a steady- 

state calculation, because much of the mean flow never passes through the region of 

enhanced viscosity. Therefore, when eddies are present, the circulation in the interior 

is controlled non-locally by the frictional sublayer at the boundary. 

The mean flow is comparable between some of the calculations and those with 

higher Re(int) but lower Re(bdy), e.g., the mean streamMnes of the Re(bdy)=0.5, 

Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=5 calculation are surprisingly 

similar. Likewise the Re(bdy)=3, Re(iiit)=3 time-mean resembles the Re(bdy)=0.25, 

Re(int)=8 calculation. When two solutions have the similar time-mean streamfiinc- 

tions, I will call them homoparic, for same mean. Section 3.2 wiU deal with homoparic 

solutions in detail. 

Curiously, some regions of the less viscous calculations are shaded. This means 

that their mean flow rotates in a direction counter to the direction of the wind forcing. 

These counter-rotating regions will be discu^ed further in section 3.3. 

Figure 2-3 compares snapshots of the vorticity and streamfunction from a ho- 

moparic pair. The lowered value of Re(int) is apparent in the wispy vorticity field 

*The time-means are taken over the second half of the total integration time here and in most of 
the dissertation. Exceptions to this rule are mentioned in the text. 
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oi    Streamfunction (Contours 0.2) 

Figure 2-2: Collage of contours of the time-mean streamfunction for different values 
of Re(int) and Re(bdy). The contour interval is 0.2 in units where 1 is the maximum 
of the Sverdrup solution. Regions of negative streamfunction are shaded. 
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Figure 2-3: Snapshots and the time-mean of absolute vorticity and streamfunction are 
given for the Re(bdy)=0.25, Re(int)=8 and Re(bdy)=3, Re(int)=3 calculations. The 
time-means are in (a),(f),(k), and (p). The upper two rows show the Re(bdy)=0.25, 
Re(int)=8 calculation. The lower two rows show the Ite(bdy)=3, Re(int)=3 calcula- 
tion. Contours are 0.1 for vorticity and 0.5 for streamftmction. Regions of negative 
value are shaded. 

around the eddies. Closer analysis reveals that the mean flow vorticity dynamics for 

these homoparic calculations differ only slightly, yet the eddies are quite different. 

More detailed analysis is presented in section 3.2. 
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Inertially-dominated 

Re(int) 
10 

Figure 2-4: (a) plots the ratio of the time-mean of the kinetic energy (jf V'^d^A/2) to 

the kinetic energy of the time-mean flow (jjT V^^d2A/2) for calculations with different 
Re(int) and Re(bdy). The dotted Unes show the range of variabihty during the interval 
of averaging. A line proportional to Re(int)^/^ is included for comparison, because 
the ratio scales approximately as Re(int)^/l The ratio is relatively insensitive to the 
value of Re(bdy), so the energy in the eddies is strongly affected by Re(int) but not 
by Re(bdy). (b) shows the kinetic energy of the time-mean flow (if ^^d^A/2) from 
calculations with different Re(bdy) and Re(int). In both (a) and (b), the dashed lines 
connect the values for a particular value of Re(bdy), and the thick Hne connects the 
values for constant viscosity parameter, i.e., Re(bdy)=Re(int). 

The relationship between the kinetic energy of the mean flow and the total kinetic 

energy (which includes both eddy and mean flow energy) changes as the viscosity 

decreases. Figure 2-4b shows that the kinetic energy contained in the mean flow 

is reduced by decreasing Re(bdy). Figure 2-4a shows that the total kinetic energy 

continues to increase with increasing Re(int) despite changes to Re(bdy). Thus, the 

control of the mean flow also extends to the energy contained in the mean flow, 

because as Re(int) increases a larger proportion of the kinetic energy resides in the 

eddy field rather than the mean flow. 
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Figure 2-5: Snapshots and the time-mean of absolute vorticity and streamfunction are 
given for the Re(bdy)=0.25, Re(int)=5 and Re(bdy)=5, Re(int)=5 calculations. The 
time-means are in (a),(f),(k), and (p). The upper two rows show the Re(bdy)=0.25, 
Re(int)=5 calculation. The lower two rows show the Re(bdy)=5, Re(int)=5 calcula- 
tion. Contours are 0.1 for vorticity and 0.5 for streamfunction. Regions of negative 
value are shaded. 
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Figure 2-5 shows typical snapshots and time-means of the absolute vorticity and 

streamfunction for an inertially-dominated and a western-intensified calculation with 

the same Re(int). The eddy activity is strongest in the west for the western-intensified 

solution. In both cases, the eddy activity interacts with the recirculation gyre. 

2.3.2    Mechanism of Vorticity Transport 

As discussed in the introduction, the transport of vorticity is critical to the control 

of the circulation strength. Thus, the transport of vorticity in each calculation has 

been diagnosed. Ultimately the friction must remove the vorticity from the basin 

but en route there are many possible pathways for transport of vorticity. In all but 

the most viscous of these calculations, the eddy fluxes dominate the transport of 

vorticity across mean streamhnes in the basin interior, although they are not often 

the dominant term in the vorticity equation. Only in a thin layer near the boundary 

does the transport across mean streamlines become frictional. 

In this section we will first diagnose the eddy and fnctional flux divergences to 

see the effects of these processes on the mean flow. The flux divergences of western- 

intensified and inertially-dominated solutions will be contrasted, as well as the flux 

divergences of the members of a homoparic pair. Then the fluxes themselves will be 

analyzed. Finally, the effects of raising and lowering the viscosity on the meridional 

averages of the terms in the vorticity equation will be demonstrated, and they will 

reveal a simple predictor of whether a calculation wiU have an equihbrium which is 

inertially-dominated or western-intensified. 

Figure 2-6a shows the action of the frictional and eddy fluxes of vorticity on the 

mean flow for a western-intensified solution.^ The contours of the mean flow and 

the eddy flux convergence are shown. The eddies interact with the mean flow in two 

primary regions, within the western boundary current and within the recirculation 

gyre. 

^The reader may wish to review section 2.2.1 to help interpret these flux convergences. 
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0.000 

Figure 2-6: (a) The time-average streamfunction contours are superimposed on the 
eddy flux convergence (shaded) forthe Re(bdy)=0.25, Re(int)=5 calculation. Lighter 
shading denotes convergences of u%' (which remove vorticity of the sign of the wind in- 
put from the mean flow); darker shading denotes divergences, (b) is similar to (a) but 
for BB(bdy)=5, Re(int)=5. (c) and (d) are clcBe-ups of (a) and (b), respectively, near 
the western boundary. In (c-d), the friction flux divergence is also superimposed with 
thin lines (contours=10, no zero contour, dashed/solid for divergence/convergence). 
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Figure 2-6c is a close-up of figure 2-6a, and it shows that within the western 

boundary current the effect of the eddies is to transport the wind's vorticity input 

in the interior of the basin toward the western boundary. Once there, the frictional 

dissipation disposes of it/ The white region of eddy flux convergence at approximately 

X = 0.05 removes negative vorticity (of the sign of the wind input) from the mean 

flow, and the black region of eddy flux divergence near x = 0.02 deposits this negative 

vorticity closer to the boundary. The frictional contours above this black region 

in figure 2-6c indicate that the frictional dissipation receives this negative vorticity 

from the eddies. Because there are few areas of dotted friction contours, we see 

that the friction is able to remove negative vorticity from the basin, as anticipated 

by equation 2.16. In the western boundary current, the eddies' effect is to widen 

the influence of the frictional dissipation toward the basin interior. The effect of 

eddies here is reminiscent of the effect of eddies in traditional, non-rotating turbulent 

boundaxy layers. 

Within the recirculation gyre, the eddies are active while the frictional terms are 

less so. In this region the eddies transport the majority of the vorticity input across 

the mean streamhnes (see equation 2.15). This will be quantified later. The second 

effect of the eddies in the recirculation gyre is to homogenize the absolute vorticity (as 

theorized by Riiines and Young (1984). As can be seen in figure 2-5a and figure 2-5k, 

the time-mean absolute vorticity is smoothed within the recirculation gyre. 

In figure 2-6b and 2-6d, the flux convergences and mean flow are shown for a 

calculation which is inertially-dominated. Note the eddy activity generated at the 

eastern boundary near y = 0.85 in figure 2-6b. This activity is important in regulat- 

ing the strength of the inertially-dominated solutions. The importance is made clear 

by noting that in figure 2-4b that the inertially-dominated solutions have qualitatively 

different parametric dependence on Reynolds number than the western-intensified so- 

lutions. When the western frictional sublayer removes too fittle of the wind's vorticity 

'■ Equivalently, one can consider the eddies to flux positive vorticity from the western boundary 
to the basin interior where it cancels the negative vorticity input from the wind. 
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input, the recirculation continue to build up negative vorticity and enlarges until the 

recirculation reach^ the eastern boundary. Once the eastern boundary k reached, 

the eddy activity produced there change the response of the circulation because the 

eddies are able to tear vorticity from both the eastern and western boundaries' fric- 

tional sublayere. Because of the qualitative change in behavior when the recirculation 

reaches the eastern boundary, reaching it is the criterion used herein to distinguish 

w^tern-intensified from inertially-dominated solutions. In section 3.4, it is shown 

that a qualitative change in the temporal behavior of the solutioi^ also occurs when 

the recirculation gyre reaches the eastern boundary. 

One might wonder why the eastern boundary is needed instead of the northern 

boundary. In fact, due to a smah trapped eddy that forms in the northwest corner 

where the western boundary current turns to the east, which apparently is pr^ent 

only with no-sHp conditions, the net effect of the frictional flux through the northern 

boundary is to add to the wind input of vorticity by a small amount (0.64 wind 

input, 0(0.05) through the northern boundary, depending on the Reynolds number). 

Similar phenomena have been found in the comers in analytic asymptotic treatments 

of other high Reynolds number fluid problems (some are mentioned, for example in 

Cowley (2001)). The northern boundary is therefore not effective in helping to remove 

vorticity from the basin in these calculations at high Reynolds number. 

There is a white region of eddy flux convergence within the frictional sublayer of 

the western boundary current {x near 0, y between 0.5 and 0.7) in figure 2-6d that 

is not present in figure figure 2-6c. This region of convergence is consistent with the 

notion that the viscosity is insufficient in figure 2-6d to remove aU of the vorticity 

brought into the frictional sublayer by the mean flow and eddies, because this white 

region indicates that the eddy fluxes' supply of the wind's vorticity input to the 

frictional sublayer reverses dfrection to transport negative vorticity out of the white 

region. In contrast, the black regions in the frictional sublayer figures 2-6c-d impoH 

negative vorticity from eddy fluxes to be removed from the b^in by friction. 
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The black regions can equivalently be considered as sources of positive vorticity 

brought into the basin by friction. This positive vorticity is transferred by the eddy 

fiux to white regions where it is used to cancel the wind input of negative vorticity 

The wind's vorticity input is in turn brought to the white regions primarily by the 

mean flow. In the white region of the frictional sublayer figure 2-6d, negative vorticity 

is brought into the basin by friction and fluxed by eddies to black regions where it 

adds to the wind input of negative vorticity The amount of vorticity brought into the 

basin must equal the wind input for an equiUbrium to be reached, but if the frictional 

fiux changes sign in this white region, this means that the frictional flux elsewhere 

must be larger for a basin-wide equihbrium to be reached. Thus, the solution must 

increase the relative vorticity gradients near the boundary. The increase in these 

gradients changes the dynamics to be less and less like those of the linear Munk 

solution or those at lower Reynolds number. 

It will be shown below that the net result of this white convergent region on 

the eddy dynamics is that the eddy flux to the fnctional sublayer becomes no more 

effective than the mean flux in delivering negative vorticity to the western frictional 

sublayer. Thus, the eddy's advantage over the mean flow, that it can flux vorticity 

across mean streamlines, is wasted. 

The removal of vorticity through the western boundary depends on both the 

viscosity and the gradient of the time-mean vorticity (the vorticity flux is -SM^O. 

Apparently, with constant viscosity the gradient of the vorticity cannot be large 

enough to remove the vorticity from the basin at the western boundary alone in the 

single-gyre. 

As the Reynolds number increases, the increase in the vorticity gradient apparently 

changes the flow dramatically It is difficult to decide which results of the increase 

in the vorticity gradient are direct results of gradient and which results are forced 

secondarily by the direct results, as all of these events are hnked in the inertially- 

dominated equilibrium.   The total effect of all of these changes is that the eddy 
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delivery of vorticity to the Mctional sublayer and the frictional removal of vorticity 

through the western boundary layer is disrupted when the vorticity gradient becomes 

too large, an effect I will call the removal crisis. I will propose three conjectures as 

to how this removal crisfe begins, but ultimately the cause of this crisis is the lack of 

vorticity removal from the basin by friction. 

One possible direct result of increasing the vorticity gradient is that it may affect 

the formation of eddies or the kind of eddies which are pr^ent so that the flux 

divergence of these eddies undergoes a sign reversal. Once this sign reversal occurs, 

the frictional flux convergence ako changes sign to accommodate. As the frictional 

fluxes are nearly zonal and do not extend far into the basin, changing the sign of 

the frictional flux convergence impEes that the frictional flux through the boundary 

in that location also changes sign. Once this frictional flux has changed sign, larger 

vorticity gradients are required elsewhere along the boundary to remove more of the 

vorticity and these larger vorticity gradient affect the eddies even more, closing the 

circle of causality in a positive feedback. 

Another mechanism relies on the fact that near this sign reversal the boundary 

current meanders shghtly away from the boundary and back again so that the fric- 

tional flux convergence reveraes in sign (which balance the change in the eddy flux 

divergence). The meander away from the boundary is located very near where the 

recirculation gyre approaches the boundary. Thus, it is possible that the mechanism 

for the removal crisis te initiated by unchecked vorticity input to the recirculation 

gyre. As more and more vorticity is input by the wind into the recirculation, it be- 

comes stronger and stronger. Once this gyre become sufficiently strong, it causes a 

meander in the boundary current, reversing the sign of the friction flux convergence, 

which then leads to a sign reversal of the eddies. However, this hypothesis seems 

somewhat unhkely as the steady-state solutions with large recirculation gyres as in 

figure 1-2 do not have a reversal in the sign of the friction flux. 

Fuially, the recirculation gyre strongly interacts with the eddies, and many of the 
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Figure 2-7: Maps of the normal frictional flux through each of the boundaries for the 
western-intensified Re(bdy)=0.25, Re(int)=5 calculation (on left) and the inertially- 
dommated Re(bdy)=5, Re(int)=5 calculation (on right). The four plots surrounding 
each contour plot indicate the frictional flux through the nearest boundary to each 
box (-(^A/VC) as a function of distance along the boundary. The flux through the 
western boundary needed to remove the wind stress input at the same latitude (as in 
the Imear Munk solution) is overlaid with dashed Unes. Arrows denote the direction 
of the frictional flux of positive vorticity Note that the scales of the flux plots axe 
different. 

eddies form along its outer extent. If the recirculation were to grow unchecked, it 

might eventually reach the point where it changes the eddy field enough to change 

the sign of the eddy flux divergence. The other effects would foUow from this change. 

Of course, however this removal crisis at the western boundary is caused, an 

equilibrium is reached, so the basin-integrated vorticity input by the wind must be 

able to be removed by firiction somewhere. The equilibrium is reached in inertially- 

dominated calculations when the eastern firictional sublayer provides another source of 

positive vorticity for the eddies to draw on once the recurculation has grown sufficiently 

large. 

Figure 2-7 shows the frictional flux through the boundary for a western-intensified 

and an inertially-dominated calculation. Some of the features mentioned above are 

worth revisiting in the context of this figure.   The removal crisis is present in the 
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mertially-dominated calcxilation's flirx through the western boundary. A dip in the 

flux of the w^tem-intei^ified calculation also occurs near this point, but it does not 

actually reverse the direction of the flux. Note how the maximum flux through the 

western boundary is nearly 2.5 times larger in the inertially-dominated case than in 

the w^tern-intemified one. Because the value of the viscosity at the boundary is 20 

times smaller in the inertially-dominated case, this means that the maximum vorticity 

gradient at the boundary in this calculation approximately 50 times greater than in 

the western inteimfied case! The flux^ through the eastern boundary are negligible in 

the western-intensified case, while the in inertially-dominated case the maximum flux 

through the eastern boundary is only 2 times smaller than the maximum through 

the western boundary. Thus, figure 2-7 also clearly shows the removal crisis, the 

larger gradient of vorticity at the boundary in the mertially-dominated case, and the 

nece^ity of the recirculation gyre reaching the eastern boundary in the inertially- 

dominated calculation. 

The frictional flux through the western boundary needed to remove the wind input 

at the same latitude where it is injected is indicated with dotted lines in figure 2- 

7. Clearly, the dip in the frictional flux and the reversal of the frictional flux in 

the northwest corner make the removal of vorticity occur at a different latitude in 

the western-intensifled calculation. Th^e effects are even more pronotmced in the 

inertially-dominated calculation, where a significant portion of the frictional flux is 

through the eastern boundary. 

Figure 2-8 fe a collage of the eddy flux convergences firom the same calculations 

depicted in figure 2-2. It is clear that as Re(int) and Re(bdy) increase, the eddy activ- 

ity increases. The white region of eddy flux convergence near the w^tern boundary 

noted in figure 2-6d is prraent in aU of the inertially-dominated calculations. 

The homoparic solutions in figure 2-2 also have similar eddy flux convergence in 

figure 2-8. The similarity in convergences does not extend to the scale of the finer 

features in the divergence field. For example, compare divergences of the Re(bdy)=3, 
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Figure 2-8: Collage of eddy vorticity flux convergences for different calculations. The 
shading scheme is the same as in figure 2-6. The -1 and -1-1 contours of eddy flux 
divergence are added for contrast. 
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Re(int)=3 calculation to the Re(bdy)=0.25, Re(int)=5 calculation. While the mean 

solution are similar, the eddy flux convergences differ somewhat but the total effect 

of friction (including the change in the viscosity) compensates. The fine-scale feature 

of the eddy convergence and the eddies themselves differ dramatically. The differences 

are treated more fully in section 3.2. 

An analysis of the iuxes, instead of the flux divergence, is also enlightening. 

However, plotting the eddy fluxes of vorticity as a vector field is not particularly 

helpful, as the vectors do not obvioi^ly point firom one divergent region to a convergent 

one. To make the flux field seem more rational, past authors have chosen to decompose 

the eddy fluxes into divergent and rotational parts. However, as shown in Fox-Kemper 

et al. (2003) this decomposition is not unique in a boimded domain. One can study 

the effects of only the divergent fluxes, as they are weU defined if they are calculated as 

the average flux out of a chosen region. As shown in equation 2.15, this is particularly 

Ireful when the area of integration is chosen to be the area within a mean streamUne, 

as in that case the mean advection terms vanish. In figure 2-9, the results of such a 

calculation are shown for two different runs of the numerical model.^ 

Figure 2-9a shows the Motional and eddy fluxes through a mean streamUne for the 

same calculation as shown in figure 2-6a which is western-intensified. For ^<0.2, the 

eddy fluxes carry more of the vorticity flux. So, in this western-intensified solution, 

the wind input is carried from the interior streamUne to the region near the boundary 

(where ^<0.2) by the eddies. Near the boundary, the eddies dehver the vorticity to 

the friction which then removes it from the basin. 

Figure 2-9b shows the frictional and eddy fluxes through a mean streamhne for 

the same calculation as shown in figure 2-6b which is inertiaUy-dominated. In this 

calculation the maximum of the streamfunction is much larger, as the circulation 

is inertially-dominated and is much stronger. However, even here the eddy flux of 

vorticity is larger than the frictional flux for i>0.5. Thus, in the inertially-dominated 

^The reader may wish to review section 2.2.1 to help interpret these plots of iux versus time-mean 
streamfunction. 
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Figure 2-9: (a-b) show the vorticity flux across mean streamhnes. Shown are 
the eddy flux out of the streamhne (f^^ il^ • nds), the friction flux out of 

the streamhne (-/^^ (5|^VC • nds), and the wind forcing within that streamhne 

(- jrv><V'c sm{ny)(PAj. A balanced budget results when the eddy flux plus the friction 
flux equals the forcing, (a) shows the result for the Re(bdy)=0.25, Re(int)=5 calcu- 
lation, (b) shows the result for the Re(bdy)=5, Re(int)=5 calculation. See figure 2-6 
for location of mean streamhnes for these calculations. The sum of the frictional 
fluxes at the boundary is the frictional removal from the basin. The sum of the eddy 
fluxes at the boundary is zero. See section 2.2.1 for details. 
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calculations it is not a la^k of eddy vorticity transport which leads to the inertial- 

domination. Rather, it is the lack of firiction near the boundary which prevents the 

ultimate removal of the vorticity from the basin. 

In thermal convection, the Nu^elt number is a ratio of heat fluxes used to a^ess 

the increase in efficiency of heat transport due to the presence of convection. It is 

defined as the ratio of the total heat transport to what the purely diffusive heat 

transport would be for the same flow. Th\is, if there is no convection, the ratio is one. 

If there is convective transport, this ratio will be in excess of one. The more efficient 

the convective traiaport, the larger this ratio will be. That is, if the convection is able 

to make a large transport even with a small gradient, the Nusselt number is large, 

and the convection is considered efficient. 

The fluxes determined in figure 2-9 aUow a similar construction to the NiKselt 

number to be made from the vorticity fluxes. The ratio of the total vorticity transport 

across a mean streamhne to the frictional flux acrcBs that mean streamline, hke the 

Nusselt number, is a measure of how efficiently the eddies are able to flux vorticity 

across the mean streamhnes. For the purposes of this dissertation, the efficiency of the 

eddy transport will be defined as the ability of eddy flux^ to increase the magnitude 

of this ratio, and thereby more efficiently deHver vorticity to the frictional sublayer. 

Note that for a steady-state solution, thk ratio will be one everywhere. Otherwise, 

the larger it is, the more important the eddy flux is across a particular streamline. 

If it is less than one, it is becai^e the eddy flux is in the opposite direction to the 

frictional flux. So, just as with the Nusselt number, if this flux ratio is large, the 

eddies are transporting a large flux compared to what the frictional flux, even though 

the mean gradient is not large enough to cause a large frictional flux, so the eddy flux 

is considered to be efficient. 

The Nusselt number is usuaUy defined with a denominator that is the frictional or 

diifrisive flux which would occur in the absence of motion. Here, however, the denom- 

inator of the flux ratio depends on the time-mean solution's vorticity gradient which 



changes throughout the basin and as the parameters change. Because the Nusselt 

number is compared to a 'standard' flux which doesn't change with the parameters, 

the Nusselt number is easier to interpret than this flux ratio. 

The prototypical Nusselt problem is a fluid trapped between an upper and a 

lower surface, each at a particular temperature. In that situation, it is clear that 

the heat flux from one plate to another is well-defined. It is sensible to compare the 

case without convection to the case with convection, as the plates do not move, nor 

does the temperature of each plate. There is no mean flow which changes with the 

parameters to include. 

The flux ratio used here, on the other hand, is not as easy to define or interpret 

because the mean fiow and the source of vorticity change with the parameters. To 

remove the effects of the changing mean fluxes from the ratio, we consider the flux 

across mean streamlines. The result of this, however, is that unlike the two fixed 

plates in the Nusselt problem, the source of vorticity changes as the mean streamlines 

change and enclose more or less of the wind input. In the Nusselt problem, the 

flux across a plane parallel to the two plates at any vertical level is the same in 

equihbrium. Here, the flux across the innermost nested streamhne is small (as it 

encloses Uttle of the wind input) while the flux across the streamline closest to the 

boundary is large (as it includes ahnost aU of the wind input). Thus, the flux across 

each streamhne is different and cannot be compared to a standard value of the flux as 

in the Nusselt problem. Thus, the flux ratio Here needs to be a frinction of the mean 

streamftmction, which leads unavoidably to a variable denominator. Although this 

flux ratio is therefore not as satisfying as the traditional Nusselt number (and should 

not be directly compared to Nusselt numbers in other calculations for this reason), it 

seems the best choice available. 

A plot of this ratio is given in figure 2-10 for the same calculations shown in 

figure 2-9. It is clear from figure 2-10 that the calculation with boundary-enhanced 

viscosity has more of its total vorticity flux across mean streamlines carried by the 
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Figure 2-10: This figure shows the ratio of the total vorticity flux across a mean 
streamline to the frictional flux across a mean streamHne as a function of mean 
streamfunction. It is constructed from the fluxes in figure 2-9. 

eddies in the basin interior.   For both calculation, the ratio approaches one as Ip 

approaches zero as there is no eddy flux through the basin boundary.^  Thus, the 

eddies are able to control the circulation strength in the boundary-enhanced viscosity 

case while they are not able to do so in the constant viscosity case. 

To understand what separates the inertially-dominated and the western-intensified 

equihbria, it is helpful to see the changes in the meridional averages of the terms 

in the vorticity equation with Reynolds number.  Figure 2-lla shows the viscosity 

parameter used in three separate calculations which share the same value of Re(bdy). 

Figures 2-llb-d show the effect of changing the viscosity on the meridional average 

of the vorticity flux convergences. Of the three calculations, the two with the largest 

interior viscosity are western-intensified, while the other one is mertially-dominated. 

Figure 2-12a shows the visc<Mity parameter used in three separate calculations, while 

figures  2-121>d show the effect of changing the viscosity on the meridional average 

The eddy flux across the zero mean streamline is nonzero due to the flux into the counter- 
rotating region. This is due to the way that the iuxes across mean streamlines are defined in this 
figure, as discussed in section 2.2.1. 
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Figure 2-11: (b-d) show the meridional average from y=0 to y=l of the vorticity 
flux convergences as a function of x within the frictional sublayer for solutions with 
three different values of Re(int): 3 (soUd lines), 5 (dashed Unes), and 8 (dotted lines). 
Re(bdy)=0.5 for all three cases, (a) shows the three different viscosity parameters 
(^M) used, (b-d) show the frictional, eddy and mean flux convergences, respectively. 
The /?-flux is similar across the three calculations in this region (not shown). In 
the inertially-dominated solution (Re(bdy)=8 (dotted)) the mean advection deliv- 
ers negative vorticity closer to the boundary than the eddy advection, while in the 
western-intensified cases (Re(int)=3 (solid) and Re(int)=5 (dashed)) the eddies de- 
liver negative vorticity closer to the boundary. 
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Figure 2-12: (a-d) are as in figure 2-11 except for solutions with three different values 
of Re(bdy): 0.25 (sohd hnes), 1 (dashed Unes), and 7 (dotted hues). Re(int)=7 for all 
three cases. In the inertially-dommated solutiom (Re(bdy)= 1 (dashed), 7 (dotted)) 
the mean advection dehvera negative vorticity closer to the boundary than the eddy 
advection, while in the western-intensified case (Re(bdy)= 0.25 (sohd)) the eddies 
deliver negative vorticity closer to the boundary. 
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Figure 2-13: (a-b) show the average from y=0 to y=l of the eddy and mean vorticity 
fiux convergences as a function of x within the frictional sublayer for two different 
solutions: (a) Re(bdy)= 0.25, Re(int)=5 (western-intensified), and (b) Re(bdy)= 
0.25, Re(int)=9 (inertially-dominated). In the inertially-dominated solution the mean 
advection delivers negative vorticity closer to the boimdary than the eddy advection, 
while in the western-intensified case the eddies deliver negative vorticity closer to the 
boundary. 
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of the vorticity flux convergences. Of the three calculations, only the one with the 

largest boundary vtecosity is western-intensified, while the other two are inertially- 

dominated. 

The balance is similar in the six calculations shown in figures 2-H and 2-12, with 

friction, eddy and mean vorticity flux convergence all playing important roles in the 

frictional sublayer. The ^-flux convergence is ako an important term but does not 

vary significantly with viscosity, so it is not shown. 

The relative location of the peak of the eddy and mean flux convergences is dif- 

ferent for the western-intensified and the inertially-dominated calculations. Where 

the solution is inertially-dominated, the mean transport peaks closer to the boundary 

than the eddytrar^port, while w^em-intensified calculations have the eddy advec- 

tion dehvering the vorticity deeper into the frictional sublayer. It is sensible that in 

a parameter range where the steady-state calculation is inertially-dominated but the 

time-dependent calculation is wetern-intensified that the eddies should be able to 

deliver vorticity closer to the boundary than the mean flow. Otherwise, the eddies 

would be no more effective in reducing the circulation strength than the mean flow. 

The predictive skill of this simple test holds true throughout the calculation carried 

out here, and it is directly related to the region of eddy flux convergence pointed out 

m figure 2-6d. As the friction is u^ufficient to remove all of the vorticity delivered 

to the frictional sublayer, the eddies reverse their flux in this region and transport 

vorticity back toward the basin interior. This effect, when averaged, is what causes 

the peak of eddy vorticity flux convergence to be located farther out than in the case 

where the friction is sufficient. Figure 2-13 compares the location of the peaks in an 

inertially-dominated versus a western-intensified calculation. 

Thus, the delivery of vorticity into the frictional sublayer by the eddy flux^ breaks 

down in the inertialy-dominated solutions. This is shown on average in figures 2-11, 

2-12, and 2-13 and is also preent in figures 2-6 and 2-8. In the inertially-dominated 

solutions near the center of the frictional sublayer, the eddy flux divergence changes 
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sign because the frictional sublayer does not remove enough of the vorticity (see 

especially figure 2-6d). 

In summary, eddy fluxes are the primary transport of vorticity across mean stream- 

Hnes transport throughout the basin. Only in the frictional sublayer is the friction 

dominant. If the frictional sublayer is sufficiently strong, the eddies are able to flux 

vorticity deeper into the sublayer than the mean flow can. This flux prevents the 

solution from entering an inertiaUy-dominated configuration. Therefore, the eddies 

can replace the frictional flux across mean streamUnes in the basin interior as the 

viscosity is lowered. Occasionally, with smaller and more energetic eddies in solutions 

with higher Re(int), the mean flow of solutions with different Re(int) an Re(bdy) can 

be made similar (homoparic), where the increase in the eddies and the decrease in 

friction manage in concert to produce a similar effect on the mean flow. 

2.4    Conclusion 

In this chapter, the well-known result that the eddies in a wind-driven, single-gyre 

model are unable to accommodate a reduction in the viscosity everywhere in the 

basin is confirmed. This is because although the eddies are capable of replacing the 

frictional fluxes across mean streamhnes in the basin interior, they are unable to flux 

vorticity through the basin boundaries. 

Because the friction is intended in part to parameterize the effects of eddies, this 

result has caused much confusion in the past. It was thought that as the parametriza- 

tion was removed, the newly energized eddies would be able to take over for the pa- 

rameterization. Because this does not occur, the increasing domination of inertial 

terms throughout the basin is sometimes called inertial runaway. 

However, in this chapter, it is pointed out that the friction in the homogeneous 

model represents not only the eddies, but also the unresolved interactions with the 

boundary   In particular, it represents all of the processes that might ultimately 

88 

i 



N^ 

remove vorticity from the basin. By using a coEstant viscosity, one tacitly assumes 

that these processes are equivalent to the unresolved eddy process^. The results in 

this chapter demoi^trate that if a separation is made between the boundary precises 

and the interior processes, the conundrum of inertial runaway is avoided. 

When the viscosity is large in only a narrow frictional sublayer, even one which is 

thinner than the width of the inertial boundary layer, but small in the basin interior, 

the chculation can be controlled with a resulting equihbrium state which is western- 

intensified. The mechanism of this control reli^ upon the efficient removal of the 

wind's vorticity input from the basin. The removal of this vorticity occurs in steps. 

First, the vorticity is absorbed from the wind primarily by the mean flow. As the 

viscosity is small in the basin interior, the mean flow is relatively inviscid, and so it 

carries the vorticity along to the western boundary. The western intensification model 

presented by Chamey is quite similar to the concentration of the vorticity into a thin 

boundary layer which occurs in this model. Because the frictional sublayer is smaller 

than the inertial boundary layer, some of the mean flow passes through the frictional 

sublayer, but some of it does not. The eddies are able to take the vorticity in the 

mean flow which doesn't penetrate this frictional sublayer and tramport it acro^ 

the mean flow's streamHn^ closer to the boundary and into the frictional sublayer 

where they deposit it. Thus, the effect of the eddies and of the mean flow is not to 

remove vorticity, but to transport it. FmaUy, the friction removes the vorticity from 

the basin. 

When the viscosity is too smaU in the frictional sublayer, the friction cannot re- 

move all of the vorticity that the eddies deposit within only the western and northern 

frictional boundary layers. Thus, in an area of the frictional sublayer, the eddies' 

vorticity transport reverses direction and transports negative vorticity toward the 

interior. The buildup of negative vorticity in the recirculation gyre causes the re- 

circulation to grow until the eastern boundary is reached, at which point the strong 

mean flow of the recirculation gyre agmmt the eastern boundary's frictional sublayer 
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is able to provide an additional source of vorticity to oppose the wind's input. 

Ultimately, these are consequences of the fact that the removal of vorticity through 

the western boundary relies on both the viscosity and the gradient of the time-mean' 

relative vorticity (the vorticity flux is (J^fVC). Thus, as the viscosity near the bound- 

ary decreases, the relative vorticity gradient increases. This gradient is active in the 

inertial terms as well, and a consequence, the eddy deUvery of vorticity to the fric- 

tional sublayer is interrupted. When this occurs, the eddies are not able to dehver the 

vorticity any closer to the boundary than the mean flow, and so the interior stream- 

lines of the mean flow have no outlet for the vorticity input by the wind. Only when 

the recirculation gyre reaches the eastern boundary and a new source of vorticity is 

found is an equihbrium made possible. From this point on, a change in circulation 

strength at equilibrium with increasing Reynolds number is reduced. However, the 

recirculation gyre now fills most of the basin, and so the equilibrium is inertially- 

dominated. 

Thus, when the frictional sublayer is suflSciently strong, the solutions can be con- 

trolled. The primary effect of friction in the interior, transport of vorticity across 

mean streamhnes, can be replaced by eddies. Sometimes, when the Reynolds number 

changes, the changes in the eddies and those in the friction compensate so that the 

mean flow is relatively unchanged. These homoparic solutions lend great hope that 

there may be a truly accurate eddy parametrization possible for this model. 

The importance of these results in the context of the real ocean is that although 

eddies in the ocean interior may transport vorticity, they cannot create or destroy it. 

Therefore, there will always be a role for boundary processes. 

Also, there is httle reason to beheve that inertial-domination will not occur in more 

inclusive ocean models eventually. General circulation models cannot be operated 

with viscosities small enough for this to be a problem now, but this will be possible 

soon. Then, it will be time to turn not to the strengthening of eddy processes in 

the interior, but to the interaction of eddies and the boundary.   The appropriate 
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interpretation of the r^ults here is that the eddies produced in this model will have 

analogues in more complex models. It seems likely that the additional source of 

instabilitiK that lead to eddies in more complex modek should make it easier for 

the eddies to perform the transport of vorticity across mean streamhn^. Thus the 

abihty of the simple eddies present here to effect enough vorticity transport indicates 

that even in the general ckculation models it is Ukely that inertial-domination be 

controlled by ensuring the boundaries are accurately parameterized with sufficient 

capability for vorticity removal. 

This model, though simple, has been able to point out the importance of the struc- 

ture very near the boundary and its role in the removal of vorticity from the basin. 

As general circulation models reach higher Reynolds numbers and finer resolution, 

these issues wiU become relevant in understanding the results of three more complex 

models as well. When these models are well-understood enough to correctly predict 

the transports and recirculations of the western boundary currents without tuning of 

parameters it is now clear that the interaction of eddies with the boundary will play 

a role. 
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Chapter 3 

Eddies' Effects in the Single-Gyre 

Model with Low Interior Viscosity 

The previous chapter demonstrates that the circulation strength of the single-gyre can 

be controlled at a larger Reynolds number using a combination of eddy tramport and 

boundary-enhanced viscosity. Once this control is achieved, it is possible to produce 

calculations which remain westem-intei^ified at a much higher Reynolds number in 

the basin interior. In these relatively inviscid calculations, a number of interesting 

phenomena occur. Although many deserve more attention than is possible here, brief 

introductions to those phenomena that I have found interesting are in this chapter. In 

particular, much of the interest pr^ent in this model is created by the existence and 

the effects of strong eddies. Along with th^e introductiom, two sectiom-^ne on the 

effects of bottom friction and one on changing the boundary conditioiK to shp-help 

to place the results of this model in context with the work of others and the next 

chapter. 

The structure of the boundary layer in the main region of eddy activity is explored 

in section 3.1. The structure of the boundary layer in this region is novel, with the 

eddies playing a critical role. 

The homoparic solutions that were observed in the results of the first chapter are 
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explored in more detail in section 3.2. Some diagnostic calculations reveal that these 

homoparic solutions are not exactly the same, in particular the energetics and scales 

of the eddies are quite different. 

The counter-rotating gyres that were pointed out in the less viscous calculations 

in the previous chapter are diagnosed in section 3.3. The eddies again play a critical 

role. 

The eddies form a compHcated temporal structure for the calculations which is 

discussed in section 3.4. Although they are in a equilibrated state, some of the 

solutions have a large degree of variabiHty, and they can be variable on rather slow 

time scales. 

The presence of variabihty that resembles the linear basin modes of oscillation is 

noted in section 3.5. 

In the previous chapter, the role of eddies and friction in the removal of vorticity 

was presented. In section 3.6, the complementary removal of energy by the eddies 

and friction is discussed. 

The final sections of this chapter present some of the effects of adding bottom 

friction in addition to the lateral friction and using slip boundary conditions on the 

eastern and western boundaries. The eddies in the model axe significantly altered by 

these changes. 

3.1    Boundary Layer Balances 

In order to compare the solutions generated here with traditional boundary layer 

theories (such as Stommel (1948), Munk (1950), and Charney (1955)), the balance 

of terms in the vorticity equation is presented near the western boundary. The three 

plots in figure 3-1 show the meridional average of the terms in the vorticity equation, 

with the average taken over different regions of the boundary layer. These regions are 

indicated in figure 3-2. Figure 3-la shows the average in the region where the interior 
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Figure 3-1: (a-c) show the meridional average of the vorticity flux convergences as 
a function of x for the Re(bdy)=0.25, Re(int)=5 calculation, (a) shows the average 
over the Charney boundary layer region where the interior flow enters the boundary 
current (y=0 to 0.5). (b) shows the average over the region between the Charney 
region and the exit region, (c) shows the average over region where the boundary 
current leaves the western boundary. The averaging regions are indicated in figure 3-2. 

flow enters the boundary layer. Figure 3-lb shows the average in the region between 

where the interior flow entere the boundary layer and the exit region. Figure 3-lc 

shows the average in the region where the boundary current exits to rejoin the interior 

flow. 

Figure 3-la shows the meridional average of terms in the vorticity equation in the 

region where the interior flow enters the boundary layer. In this region, the Char- 
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Figure 3-2: Contours of the time-mean streamfunction of the Re(bdy)=0.25, 
Re(int)=5 calculation with the regions of the boundary layer that are analyzed in 
figure 3-1 indicated. 

ney (1955) inertial boundary layer solution can exist (as demonstrated by Greenspan 

(1962)), and for the outer part of the boundary current (where the /?-term still indi- 

cates a strong northward flow, 0.04 < x < 0.08.) the calculation's balance resembles 

the Charney (1955) model as the advection of planetary vorticity and relative vortic- 

ity are in balance. Although the Charney boundary layer width is 0.02, this is only 

the a priori estimate of the exponential scale of the boundary current, the vorticity 

balance the Charney model proposes is important over a somewhat wider region. For 

X < 0.03, there is a ftictional sublayer acting to enforce the ncHsHp boundary condi- 

tion. There, the friction balances the mean advection of both relative and planetary 

vorticity. In the middle region, 0.03 <x< 0.05, there is significant action of eddies. 

The eddies widen the influence of the frictional sublayer to this region by transporting 

vorticity to the frictional sublayer. In essence, the solution in the entry region of the 

boundary layer agrees with the lerley and Ruehr (1986) steady-state picture of an 

inertial boundary layer with a frictional sublayer, except that the eddies join in to 
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widen the influence of the frictional sublayer toward the interior. 

Figure 3-lc shows the meridional average of terms in the vorticity equation in 

the exit region of the boundary layer, where it combines with the recirculation gyre. 

As shown by Il'in and Kamenkovich (1964) (and in Enghsh in Kamenkovich (1966)) 

and lerley and Ruehr (1986), there is no steady-state boundary layer solution here. 

In this region, the dynamics are dominated by the mean flow toward the interior. 

The primary balance is between the advection of relative and planetary vorticity. For 

0.08 < a: < 0.15, the eddy flux convergence is balanced by all of the other terms 

combined. There is a frictional sublayer present here as well, except in this region, 

the friction is acting to add negative vorticity to the basin, rather than to remove it. 

This appears to be a necessary consequence of the transition in this region from no- 

sKp to sUp boundary conditions. In the next chapter, we will see that this transition 

has significant consequences in the structure of the boundary layer. 

Figure 3-lb shows the meridional average of terms in the vorticity equation in 

the region between the entry and exit region. Here, the boundary layer structure is 

unhke any of the traditional steady-state theori^. Like the ideas of Pedlosky (1965a), 

the presence of tim^dependent phenomena near the boundary is important, but here 

the critical feature is not the presence of reflecting remotely-forced Rossby waves; 

these eddies are locally generated by shear instabilities. The eddies play a critical 

role in energy and vorticity transport in this region, and they are present became the 

vorticity build-up near the boundary leads to shear instabihties. 

Edwards and Pedlcsky (1998) find that a similar boundary layer structure is pos- 

sible when mass needs to be transported across the equator in a relatively inviscid 

boundary layer. In their model, a vorticity transformation is required for the flow 

to cross the equator. Edwards and Pedlosky (1998) find that at sufficiently large 

Reynolds number, the necessaiy transformation of vorticity is carried out by the 

combined effects of eddies and friction. The eddies transport vorticity from an rela- 

tively inviscid boundary layer to a frictional sublayer. The removal of the vorticity 
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from the boundary layer fluid by the eddies changes the vorticity of the boundary 

layer fluid as it progresses. 

Toward the interior in figure S-lb, the balance is between eddy advection of vortic- 

ity and the advection of planetary vorticity, and toward the boundary there is a fric- 

tional sublayer. This region could be described as having an eddy-inertial boundary 

layer with a frictional sublayer, or perhaps as having a turbulent frictional boundary 

layer. In this region of the boundary layer the change in vorticity due to the northward 

advection of planetary vorticity is relieved by the eddy vorticity flux convergence. 

To summarize, the boundary layer structure in the single-gyre model with boundary- 

enhanced viscosity has a clear separation into an outer inertial region and an inner 

frictional sublayer. Where a steady-state inertial boundary layer solution exists, this 

inertial region is of this type. In this part of the boundary layer, the eddies work 

to widen the influence of the direct action of friction. Farther along the boundary 

layer, the steady-state solution no longer exists, and in this region the eddies play a 

primary role-they balance the /?-term single-handedly. 

3.2    Homoparic Calculations 

In section 10, it is pointed out that some of the solutions with different values of 

Re(int) and Re(bdy) have very similar mean fields. In this section, two pair of these 

homoparic calculations are examined closely. The first pair contains the Re(bdy)=0.5, 

Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=5 calculation. The second pair 

contains the Re(bdy)=3, Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=8 

calculation. 

Figure 2-2 shows that the two members of each pair have quite similar time-mean 

streamfunctions. The vorticity dynamics of the time-mean fields are therefore quite 

similar as well, although there are small differences. On the other hand, the eddies 

present in the homoparic calculations differ significantly between the pair members. 
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This section demomtrates that these solutions have only small differences in the 

mean fields, while the frictional flux divergence (including the effects of changing the 

viscosity) and eddy vorticity flux divergence differ sUghtly in a compensating way, 

and while the eddies themselves are quite different. 

Figure 3-3 shows the meridional averages of the terms in the vorticity equation 

near the western boundary for the two homoparic pairs. In each pair, the meridion- 

ally averaged vorticity flux convergences are similar. The small differences that do 

appear in the flux convergences can be divided into two general groups, those whose 

magnitudes vary and those whose gradients vary. An example of each is shown here. 

In figure 3-3b, all of the terms are similar except the eddy and frictional terms 

which change in magnitude as Re(bdy) and Re(int) change. In the Re(bdy)=0.25, 

Re(int)=5 calculation, the eddies have a larger magnitude of vorticity transport than 

m the other case. The frictional term also increases magnitude modestly to accommo- 

date this change in the eddy fluxes. Tims, although the eddy fluxes change, the net 

effect of the eddy fluxes and frictional fluxes on the mean flow does not. Because the 

frictional term is proportional to a higher derivative of the streamfunction than the 

mean advection or /?-term, this adjustment can be made without a significant change 

to the other terms. A small change is present in the /3-term, which indicate that the 

boundary current is slightly wider in the Re(bdy)=0.25, Re(int)=5 case than in the 

Re(bdy)=3, Re(int)=3 case. The differences between the members of this homoparic 

pair are typical of homoparic pairs where the Re(bdy) and Re(int) changes are not 

large. 

Figure 3-3a shows a homoparic pair where the change in Re(bdy) and Re(int) are 

larger than those in the homoparic pair shown in figure 3-3b. In figure 3-3a it is the 

gradients in the mean fields, rather than the magnitudes which are different. This can 

be understood by noting that since the same vorticity flux must be transported by the 

frictional term as the boundary is reached, there must be a change in the mean field 

so that SlfVC remains the same at the boundary. In figure 3-3a, the Re(bdy)=0.25, 
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Figure 3-3: (a-b) show the meridional average of the vorticity flux convergences 
m the Reynolds-averaged vorticity equation for two pair of homoparic calculations 
(a) shows results firom the Re(bdy)=3, Re(int)=3 calculation (soHd lines) and the 
Re(bdy)=0.25, Re(int)=8 calculation (dashed Unes). (b) shows results from the 
Re(bdy)=0.5, Re(int)=3 calculation (solid Hnes) and the Re(bdy)=0.25, Re(int)=5 
calculation (dashed Hnes). 
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Re(int)=8 calculation has higher viscosity near the boundary and lower viscosity 

in the interior than the Re(bdy)=3, Re(int)=3 calculation. Tbm, the gradients in 

the time-mean helds are weaker near the boundary and stronger in the interior in 

the Re(bdy)=0.25, Re(int)=8 case. This change in the gradients sHghtly widens the 

boimdary current and moves it away from the boundary as can be seen in the ^-term 

and mean advection term in figure 3-3a. 

Along with the necessary change in the frictional flux convergence, the eddy, 

/?-, and mean flux divergence are located farther away from the boundary in the 

Re(bdy)=0.25, Re(int)=8 calculation. Although I have not been able to pinpoint 

why each of these terms shifts outward, it should be clear that once the shift has 

occurred in the frictional flux convergence, the rest must also shift if the structure of 

the time-mean fields is to be similar for the homoparic pair. The global structure of 

the time-mean fields is incredibly sei^itive to the dynamics in this region (as pointed 

out in section 2.3.2). The same amoimt of vorticity mi^t be transmitted across the 

same mean streamlines with the same efiiciency, even if they are located slightly 

further away from the boundary. Therefore, as the frictional flux convergence shifts 

outward to allow for a reduced gradient when Re(bdy) decreases, the other terms in 

the vorticity equation must also occur farther out if the solution is to be homoparic. 

As the members of a homoparic pair have the same input of vorticity by the wind 

and the same output of vorticity by friction (although with different vorticity gradients 

at the boundary), the pair member with higher Re(int) must have more efficient eddy 

transport of vorticity across mean streamline in the interior. TMs must be the case 

as the time-mean vorticity field is similar to that of the other pafr member, but the 

viscc^ity is smaller; thus, the impMed frictional vorticity flux is smaller. In order to 

have the same transport of vorticity across mean streamlines, the eddy flux must be 

correspondingly larger. Figure 3-4 shows the ratio of the total vorticity flux to the 

purely frictional vorticity flux across mean streamHnes. This reveals that indeed in 

the calculation with larger Re(int), the eddy flux across mean streamlines plays a 

101 



>-30.0 
•o28.0 
fe26.0 
:§24.0 
■522.0 H 
§20.0 

■■518.0 - 
£16.0- 
>14.0 - 
= 12.0- 

■"10.0 
.■? 8.0 
•.S   6.0-1 
o   4.0 - 
_   2.0 - 
S   0.0 

0.00 

Re(b<(y)-0.25. Re(ir>t)»8 ^ 

Re(bdy)-5et; 

0.20 0.40 0.60 
Mean Streamfunction 

0.80 1.00 

Figure 3-4: This figure shows the ratio of the total vorticity flux across a mean stream- 
Une to the frictional flux across a mean streamhne as a function of mean streamfunc- 
tion. It is constructed from the fluxes for the homoparic pair with Re(int)=Re(bdy)=3 
and Re(bdy)=0.25, Re(int)=8. 

larger role than the frictional flux across mean streamhnes when compared to the 

other homoparic pair member. 

The homoparic solutions in figure 2-2 also have similar eddy flux convergences 

(shown in figure 2-8). However, although the convergences are similar, the scale of 

the finer features in the convergence field is smaller in the pair member with larger 

Re(int). 

The smaller scale of eddies in the inviscid calculations can be easily understood 

as a change of viscosity in the interior of the basin strongly affects the enstrophy 

cascade there. In homoparic calculations, we expect that there will be more small- 

scale features in the vorticity field of the member of the pair with higher Re(int). 

It is pointed out in the introduction that considering eddy viscosity as merely the 

cutoff of enstrophy at high wavenumbers can be misleading when boundary layers are 

present. However, the cutoff of the enstrophy cascade remains a useful model for the 

dynamics of eddies' evolution away from the boundary. 
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The presence of th^e small-scale enstrophic feature can be seen by eye in fig- 

ures 2-3 and figure 2-8, but figure 3-5 is a quantitative pr^entation. Figure 3-5 

demonstrates that the amplitudes of small-scale Cheb^hev modes tend to be larger 

in the homoparic pair member with a larger value of Re(int). Because the Chebyshev 

modes are smaller in scale at higher mode number, a slower decay in the spectrum 

with mode number indicate more small-scale phenomena. In this respect, the square 

of the Chebyshev coefficient is similar to a traditional squared-Fourier coefficient spec- 

trum plotted by wavenumber, but with with enhanced weighting near the boundary. 

The connection between the Fourier and Chebyshev transforms is presented in Ap- 

pendix A. 

Finally, by careful analysis of figure 3-11, and by viewing of movies of the ho- 

moparic pairs, I have noted that there are significant differences in the spin-up time 

of the homoparic pair members. The one with greater Re(int) tends to take longer to 

spin-up. Thus, although the effects of the eddies are 'parameterized' by the changes 

in the viscosity, the parameterization do^ not extend fiilly to the time-dependence 

of the homoparic pairs. 

In this section, I have shown that while the time-mean streamfunction of the ho- 

moparic pairs members is similar, upon evaluating the terms in the vorticity equation 

using these terms, small differences can be found. These small differences can be 

either in the magnitude of the frictional flux convergence and eddy flux divergence or 

in the gradients of all the terms. Because of the compensating changes, the resulting 

time-mean field is similar. It seenK that there ought to be a way to analyze the mech- 

anism of compensation closely and devise an effective eddy parameterization. I am 

unable to find a suitable approach to this problem, however promising it remains. In 

section 3.6,1 return to the subject of homoparic pairs where it is shown these pairs of 

calculations differ energeticaUy In section 3.4,1 also show that the homoparic pairs 

differ temporally. 
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Figure 3-5: (a-d) show the spectral decay of the square of the Chebyshev coefficient 
of C two homoparic pairs, (a) shows the average over time and x-Chebyshev mode for 
the Re(bdy)=0.25, Re(int)=8 calculation and the Re(bdy)=3, Re(int)=3 calculation. 
(b) is the same as (a) except it shows the average over time and y-Chebyshev mode. 
(c) and (d) are the same as (a) and (b) except for the Re(bdy)=0.5, Re(int)=3 and 
Re(bdy)=0.25, Re(int)=5 homoparic pair. 

3.3    Counter-Rotating Gyres 

; across Preceding sections have focused on how eddies can take over for the friction flux 

mean streamUnes as the eddy viscosity is lowered. However, there are significant and 

important differences between the eddies and the eddy viscosity One difference is 

the appearance of counter-rotating gyres in the more inviscid calculations. 

Figure 2-2 reveals the presence of closed circulations in the southeast corner of the 

basin in the more inviscid calculations. The mean flow in these regions is in a direction 
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opposite to that of the wind-strras; they are counter-rotating gyres. Three counter- 

rotating gyres are present in the figurre of Holland and Lin (1975), Kamenkovich et al. 

(1995), and Sheremet et al. (1995), but are significantly weaker than those prreent 

here and go uncommented upon in the text of those papers. 

Greatbatch and Nadiga (1999) and Holm and Nadiga (submitted 2002) observe 

these counter-rotating regions in double-gyre calculations with slip and supershp 

boundary conditions and in calculations with hyperviscosity instead of lateral firiction. 

They also propose parameterization methods so that these counter-rotating regiom 

will be pr^ent in coarse r^olution calculations without eddire. In Greatbatch and 

Nadiga (1999), a parameterization of the effects of eddies is given in which the eddy 

parameterization fluxre vorticity down the mean gradient (equivalent to ftV(5|C+|/)in 

my notation), but the boimdary condition allows for no flux of absolute vorticity out 

of the basin. The solution which they obtain from this parameterization is steady, 

yet it possreses counter-rotating regions. Th^ parameterization k not allowed in the 

models here, as there is a net vorticity input which could not be balanced were the 

boundary condition no flux of absolute vorticity However, it is interesting to note 

that the parameterization used by Greatbatch and Nadiga (1999) produces counter- 

rotating regions by simply homogenizing absolute vorticity Thus, it is possible that 

the counter-rotating regions here may also be the effects of homogenization of absolute 

vorticity by the eddy fleld. 

These gyres are not pr^ent in linear calculations (where the Sverdrup relation 

is satisfled in this region) or in steady-state solutions of the traditional nonlinear 

problem with lateral friction and sUp or no-slip boundary conditions (see, for example 

lerley and Sheremet (1995) and figures 1-1 and 1-2) because they are eddy-driven. By 

examining the region where f is negative in figure 2-9 (which represents the counter- 

rotating gyre in that calculation) one notes that firiction does not significantly affect 

the cross-streamUne vorticity flux in this region. AU of the vorticity input within these 

mean streamhnes is moved toward the boundary by eddies. During this process, the 
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eddies and mean flow interact in such a way as to have an average circulation in a 

direction counter to the direction of the wind stress. 

The eddy flux convergences in figure 2-8 and 2-6 reveal regions of eddy flux con- 

vergence in the region of the counter-rotating gyre (the closed contour filled with 

light coloring in the southeast quadrant of the less viscous calculations). The large 

spatial scale of these convergent regions indicates the character of these modes of 

vorticity transport. They are basin-scale motions reminiscent of the basin mode os- 

cillations. The wave-like motion of absolute vorticity present in these modes can be 

seen propagating from east to west in the southern portion of figure 2-5. In the more 

inviscid calculations, these modes have gained sufficient strength so as to drive a cir- 

culation, which is the counter-rotating gyre. These modes will be discussed further 

in section 3.5. 

Pedlosky (1965b) solves for the weakly-nonlinear interaction of basin modes forced 

by a traveling wave {WE = cos(A:a: - wt) sin(n7ry)) in a homogeneous model with 

bottom friction only He finds that in the weakly nonlinear limit, the zeroth-order 

solution responds linearly to the wind forcing while the first-order solution contains 

a response to the nonlinear interaction of the zeroth-order solution. This result is 

relevant here as the zero-frequency response to the nonhnear interaction caji possess 

a region which rotates counterclockwise in the southern portion of the basin. How- 

ever, Pedlosky (1965b) proposes a primary balance for this region with the eddy flux 

convergence balanced by the /?-term, whereas the counter-rotating regions here are 

in primary balance between the eddy flux convergence and the steady wind forcing 

with the /3-term as a next-order correction (see figure 3-6). Regardless, the results 

of Pedlosky (1965b) show that a nonKnear interaction of basin modes can cause a 

steady circulation, and I beUeve that a similar analytic calculation can be created to 

explain the counter-rotating regions here. 

To explore the possibihty that these counter-rotating regions are driven by basin 

modes, a simple additional experiment was performed. A calculation was performed 
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Figure 3-6: (a) and (b) show the meridional and zonal ave£ages, respectively, of terms 
m the time-mean vorticity equation in the region where ^ < 0 (the counter-rotating 
gyre) from the Re(bdy)=0.25, Re(int)=5 calculation. 

with a basin that was extended to be twice as long in the zonal direction, except 

with wind forcing only in the western half of the basin. Therefore, the Unear Munk 

solution would only extend halfway across the basin. Different calculations using this 

model are presented in section 3.5, and more discussion on the model fe presented 

there. Figure 3-7 shows the time-mean streamfunction from this calculation. There 

are clearly steady circulations which occur in the eastern half of the basin where there 

is no wind forcing. In fact, there is a region which rotates counterclockwise in the 

southern half of the basin as the counter-rotating gyr^ do, and there is a region 
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Figure 3-7: The time-mean streamfunction showing the the counter-rotating gyre in 
a calculation in a elongated basin with Re(bdy)=3, Re(int)=3. There is wind forcing 
only in the western half of the basin. The contour interval is 0.025. regions of negative 
streamfunction are shaded. 

which rotates clockwise in the northern half of the basin. This is just as in some of 

the analytic solutions of Pedlosky (1965b). 

Furthermore, figure 3-8 shows the meridional and zonal averages of the terms in 

the vorticity equation in the counter-rotating region. The most southwestern part 

of the counter-rotating gyre extends into the wind forcing, and therefore experiences 

some wind forcing, which is balanced by the eddy flux convergence in the zonal mean 

(figure 3-8b). However, in figure 3-8a, it becomes clear that only the westernmost 

part of the counter-rotating region experiences the wind forcing and the easternmost 

region is frictional. The middle of the counter-rotating region has a balance between 

the P-teua and the eddy flux divergence, just as the resonant solutions in Pedlosky 

(1965b) do.   Therefore, it seems that in the regions devoid of the wind forcing, a 
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Figure 3-8: (a) and (b) show the meridional and zonal averages, respectively, of terms 
in the time-mean vorticity equation in the region where # < 0 (the counter-rotating 
gyre) from the long basin calculation in figure 3-7. 

version of the dynamics proposed by Pedlosky (1965b) with lateral friction would 

apply Also, so long as the western boundary region is excluded, it appears that only 

a small change would be needed to add in the effects of a steady wind forcing. 

I have used empirical orthogonal ftmctions to determine the structure and fre- 

quencies of the large scale mod^ m the calculation shown in figures 3-7 and 3-8.^ 

The result is that the large scale motion in this model are consistent with the pr^- 

ence of modes of variabiHty similar to one of the basin modes. The nonlinearly-forced 

first-order solution given by Pedlosky (1965b) for this basin mode has three equaUy- 

spaced counter-clockwise gyres in the southern half of the basin and three equaUy- 

spaced clockwise gyres in the northern half of the basin (figure 3-9). The pattern of 

eddy-driven regions in figure 3-7 is consistent with such a pattern. It is quite easy 

to imagine three gyres above and below the midpoint of the basin. Considering that 

Pedlosky's solutions use bottom friction and possess no mean flow resulting from 

steady wind-forcing, this result is highly suggestive that the proper explanation of 

iThese results are not shown, but more will be said about using empirical orthogonal functions 
to identify basm modes in sections 3.4 and 3.5. The mode found here is the (m,n)=(3,l) mode. 
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Figure 3-9: Contours of the streamfunction of the analytic first-order estimate by 
Pedlosky (1965b) of the steady circulation resulting from the nonlinear interaction of 
the (3,1) basin mode. Light colors are clockwise circulations, dark colors are counter- 
clockwise circulations. 

these counter-rotating gyres is to be given by an analysis similar to that of Pedlosky 

(1965b). 

Returning to the case where there is wind forcing throughout the basin, if these 

basin modes are global and forced at the opposite end of the basin, how is it that the 

adjustment occurs so that the wind forcing is exactly balanced by the eddies? There 

seems to be a causal problem in this case. Of course, it is not the eddies which adjust, 

but the mean flow; if the closed streamlines contain too much or too little wind stress 

then they will build up a vorticity anomaly and can not remain in that position at 

equihbrium. 

It is interesting that the counter-rotating gyres exist, because in this region of 

the basin, the Sverdrup solution would be adequate. Yet, it should be quite clear 

from the inertially-dominated solutions that the adequacy of the Sverdrup solution is 

not sufficient to guarantee that effects from other parts of the basin do not overrun 

the Sverdrup solution. If the hypothesis that the basin modes interact nonlinearly to 

create these regions, then a forcing in a remote region excites the basin modes (which 

are addressed in section 3.5) which in turn cause a circulation in this region in a sense 

opposite to that expected from the local wind forcing. 

The counter-rotating regions play an intriguing role in the energy budget, as the 
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ener^ input of the wind to these regions is negative. For example, in the Re(bdy)=3, 

Ite(int)=7 calculation, the counter-rotating gyre reduce the energy input to the mean 

flow by 12.6% when compared to the same solution except with ip set to zero in 

the counter-rotating region. The necessity of reduction of energy input as Reynolds 

number is increased has been propc^ed previously by Scott and Straub (1998). The 

energetic impact of the cotmter-rotating gyre is discussed in section 3.6. 

Sahnon et al. (1976) propree that the most hkely equihbrium statistical mechan- 

ical solution to the quasigeostrophic equations te the one which maximizes entropy 

production. Griffa and Salmon (1989) were able to show that in a closed basin the 

maximal entropy production states for the unforced, non-dissipative calculation are 

modes resembling those of Fofonoff (1954). These Fofonoff-hke mod^ have been seen 

in models more recently (for example, Griffa and CasteUari (1991), Ozgokmen and 

Chassignet (1998)). One might suspect that the counter-rotating gyres seen here are 

of this variety However, this is not the case, as the Fofonoff (1954) modes are primar- 

ily a balance between mean advection of vorticity and the /3-term and are symmetric 

in the zonal direction (as discussed in the introduction). Fofonoff-like solution are 

also characterized by inertial boundary currents on the eastern and w^tem coasts. 

Furthermore, the ansatz of the Fofonoff solution-that q = g(^) is not satisfied in the 

counter-rotating region (see figure 3-10). 

Figure 3-6 shows the meridional and zonal averages of the terms in the vorticity 

equation within the counter-rotating region. This figure reveals that the counter- 

rotating gyr^ have a strong asymmetry firom east to west and the primary balance of 

terms in the vorticity equation is wind forcing balanced by eddy flux convergence. The 

unforced, non-di^ipative Hmit sought by Griffa and Sahnon (1989) is not applicable 

here. Only as higher-order corrections to this prunary balance do the mean advection 

and j0-term enter. 

Interestingly, the other correction at the next order is a fi-ictional sublayer on 

the eastern boundary, driven by the eddy flux convergence. As this gyre is counter- 
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Figure 3-10: The relationship between the mean values of (5f C + y and i> from the 
Re(bdy)=5, Re(int)=5 calculation. Note that the relationship is not a single-valued 
function as required by the Fofonoff ansatz. 

rotating, the frictional sublayer acts in the opposite sense from elsewhere in the basin. 

The friction fluxes vorticity of the same sign as the mind input into the basin in the 

counter-rotating region. Figure 3-6 shows the terms in the vorticity equation which 

are important in these gyres. 

The counter-rotating gyres are therefore quite unlike the Fofonoff-like modes de- 

scribed by Griffa and Salmon (1989), at least for the case of no-slip boundary condi- 

tions at the eastern and western boundaries. However, the question of whether the 

counter-rotating gyre represents the maximal entropy production solution remains 

open but is outside the scope of this investigation. 

To summarize, the strong basin-mode like oscillations in the relatively inviscid 

calculations drive a region of the mean flow which rotates in a direction opposite 

to the wind forcing. The primary balance of terms in these regions is eddy flux 

convergence and wind forcing. The counter-rotating regions appear to be effects 

of the nonlinear interactions of basin modes similar to those studied by Pedlosky 

(1965b). The dynamics are remarkably similar when a basin with wind forcing in 

only the eastern half of the domain is used. The counter-rotating regions are unlike 

the Fofonoff (1954) solution and the Griffa and Salmon (1989) statistical mechanics 

solutions for freely-evolving flow.   These counter-rotating regions reduce the wind 
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power input, as will be discu^ed further in section 3,6. These counter-rotating regions 

are proof that although eddi^ sometime neatly replace the action of eddy vfecosily 

in the basin interior, at other tim^ they behave quite differently, even producing 

non-local effects. 

3.4    Temporal Structure of the Solutions 

Resolved eddies differ from eddy viscosity in the temporal character of the solution. 

In a Unear calculation, where eddy viscosity represents aU of the effects of the eddies, 

a steady wind forcing always results in a steady solution. Even if the wind forcing is 

variable, the frequencies of the respome by a Hnear system are easily predicted by a 

knowledge of the resonant modes of the s^tem. In the inviscid calculations presented 

here, despite the steady forcing the solution has a significant range of variability on 

many time scales, both resonant and not. 

Even within the small parameter range studied here, there is a diversity of tempo- 

ral behaviors. As shown in figure 2-4, there is a quahtative difference in the parametric 

response between solutions that have a recirculation gyre which reaches the eastern 

boundary (inertially-dominated) and those that do not (w^tem-intensified). There is 

also a quahtative difference in temporal behavior. The western-intensified solutions 

can be further divided into three categories: steady solutions, harmonic solutions, 

and chaotic solutions. All four cases are shown in figure 3-11. 

The lowest Reynolds number calculation shown in figure 3-11 has Re(bdy)=0.5 

and Re(int)=0.5, is western-intensified and reaches a steady state. This solution is 

only sHghtly influenced by nonhnear tem^, and its response to forcmg is much like 

that of a linear model. 

At slightly higher Reynolds number, the solutions remain western-intensified, but 

the kinetic energy is seen to osciUate periodically or exhibit a superposition of a 

few frequencies.   This is the regime where instabihties are present, but only of a 
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Figure 3-11: Semi-log plot of total kinetic energy {JJ ■ip^dA/2) versus time evaluated 
every 25 time units for different calculations. The four temporal behavior classes are 
exemplified here (ordered from small total kinetic energy to large): steady, harmonic 
solutions, and chaotic solutions which are western-intensified and chaotic solutions 
which are inertially-dominated. The averaging interval for the time-means given 
throughout this dissertation is usually the second half of the length of integration. 
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few types. Each type has a typical frequency, and the variabihty caused by th^e 

instabilities interacts in a weakly nonlinear manner to produce harmonics. Because 

these modes are weak and do not strongly affect the mean flow, these calculations 

oscillate about a mean solution which is very similar to the steady solution. The 

modes of instabihty pr^ent m these calculations are addressed in Sheremet et al. 

(1997), where an analysis of the eigenfunctions of Mnear perturbations about the 

steady-state solutions is presented. This analysis fe able to correctly predict the 

onset of instabihty. However, Sheremet et al. (1997) do not fully address the nonhnear 

interaction between these modes, so mention of it will be made here. 

As an analytic example to place the nonlinear interaction in context, consider 

a weakly-nonhnear perturbation analysis of two basin mode oscillations occurring 

simultaneously. If the modes are free and inviscid, to low^t order they must satisfy 

the non-dimensional equation 

dV^     dip 
^r+^=o- (3-1) 

The streamfunction must also be constant along the boundary to guarantee imper- 

meability of the boundaries. If, as in the numerical model, the boundaries are located 

where x and y are zero and one, then the solutions for mode number (m,n) are of the 

form 

^ = 3t [^0 sin(m7ra;) sin(n^t/)e*^'^'""*+rf^^l, (3.2) 

^ = »[^„,e^('--*+iA;r)], (3.3) 

^'^^ ^ 2^Vmi+ni- (3-4) 

For a more complete introduction to the free basin modes, see Pedlosky (1987). 

The complex function £„^ is the envelope function for mode (m,n) and is complex 

so that it sets the phase of the wave as well. 

In a series expamion of the weakly nonlinear perturbation analysis, the next order 
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in the expansion will be forced by the evaluation of the nonhnear interaction of these 

linear, lowest-order modes. As an example, consider a weak nonlinear interaction 

between only two basin modes, the (m,n) mode and the (k,l) mode. Evaluating one 

of the two nonhnear terms in the vorticity equation (#1) gives 

#1= JmkJ),V'rP{m,n)) (3.5) 

J {i;ik, I), SR {[-2(mV + n^vr^) + ^] £;^„e'(^""'*+^^)}) 

The other nonlinear term, J{i;{m,n), V^i>{k, I)), will be similar in form, except with 

(k,l) and (m,n) exchanged. This calculation shows that the frequency of the in- 

teraction term-and also by symmetry the frequency of the other interaction term 

(J(^(m,n), V2'^(A:,Z)))-depend on the sum and the difference of the frequencies of 

the original modes. Therefore the frequencies of the variabihty forced by this nonhn- 

ear interaction will also be at or near frequencies which are the sums and differences 

of the original frequencies. 

This is the reason why the nonlinear interactions between basin modes as treated 

by Pedlosky (1965b) has relevance for the counter-rotating gyres. If there are two 

modes of different phase with the same (m,n), then their nonhnear interaction will 

force a response at two frequencies: a = 0 and 2a^„. It is the steady response which 

is to be considered as a cause for the counter-rotating regions. 

Notice also that the wavenumbers of the interaction terms are the sums and dif- 

ferences of the wavenumbers of the original modes: 

(o-fc; - (Tmn) 1 1_ 

O-klCTmn <Jkl        Omn '   ' 

{cTkl + CTmn) 1 1 
 = 1 . f3 7) 
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Most of the interaction here is between mod^ which are not pure waves and so do not 

have an obvious wavenumber, but this result is still useful is interpretiag the spatial 

structure of the interaction modes. 

Although the free, Mnear basin modes are not exMtly the eigenfunctions solved 

for by Sheremet et al. (1997), they are similar in their interaction. Therefore, in the 

weakly nonhnear hmit, we expect to see a small number of unstable modes, which 

interact nonUnearly with frequenci^ that are the sum and difference of the modes' 

frequencies. Figure 3-12 shows just such an interaction between two periodic modes 

in the Re(bdy)=l, Re(int)=l calculation. 

In figure 3-12, the empirical orthogonal functions (EOFs) were calculated from the 

relative vorticity field. The presence of these EOFs over time was then calculated. 

Approximately two EOFs are present for each mode of instabihty 

In chapters 3 and 4, EOFs are calculated in an attempt to empiricaUy quantify 

the primary modes of variability in the time-dependent numerical model. The em- 

pirical orthogonal functions are discussed in detail elsewhere (for example, Berkooz 

et al. (1993), Wunsch (1996)). In these calculations, the quantity of interest (0, C, 

etc.) was interpolated onto a uniformly-spaced 101x101 grid for a lengthy subsection 

(0(3000) units of l/{fiL)) of the integration time after equilibration had occurred. 

The empirical orthogonal fimctiom were then calculated on this grid over this time 

interval. 

The EOFs are roughly able to represent basin mod^, but not exactly. The basin 

modes have the form given in equation 3.3. With appropriate definitions of the 

complex coefficients #i and ^2, this can be rewritten as a sum of two standing waves: 

i)   =   3? 1^1 sin(m7ra;)sin(n7rt/)sin(-^)  e'"^'""*} 

+U\ij; sm{rmTx) sin{mry) cos 

rrvn," 
X 

n'^rn.ni 

(3.8) 

(3.9) 

The spatial pattern of these standing waves (in brackets) does not change as the ph; 
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Figure 3-12: The upper two rows contour the EOFs of relative vorticity perturbation 
from the time-mean for the first six EOFs for the Re(bdy)=l, Re(int)=l calculation 
and give the percent of the total variance associated with each EOF. The lower two 
rows give a multi-taper estimate of the power spectral density of the presence of each 
of the six EOFs. The 95% confidence interval is shown with dotted lines. 
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EOF #1, % of ¥afiance=4l .9 EOF #2, % of variance=38.7 EOF #3, % of variance=11.3 

Figure 3-13: As in figure 3-12 except for the EOFs of streamfunction perturbation 
from the time-mean for the Re(bdy)=l, Re(int)=l calculation. 
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of the wave changes, instead the their magnitude increases and decreases with time. 

The decomposition into the two standing waves is not unique, a constant could have 

been added to the spatial phase of each {e.g., cos (5^ + A)). The two EOFs which 

were generated per basin mode should agree to some extent with the spatial structure 

of these standing waves (at some arbitrary spatial phase). However, as these standing 

waves are not spatiaUy orthogonal in the x-direction, and the EOFs are required to 

be spatially orthogonal, there wiU be differences between the standing waves and the 

EOFs. These differences will increase with increasing zonal wavenumber as the basin 

modes become less and less orthogonal. Simple experiments combming a number of 

Hnear basin modes and processing them as the numerical model output was processed 

revealed that low-wavenumber basin modes were reproduced accurately in space and 

with the correct frequency with two EOFs per basin mode. The EOFs strongly re- 

sembled the standing waves of the basin modes, but the phase determining which 

standing-wave patterns are produced is arbitrary. As the wavenumber increased (es- 

pecially the zonal wavenumber) the correspondence trailed off as edge effects became 

important. These issues are discussed in more detail elsewhere {e.g., JoHffe (1986) 

and Wunsch (1997)). 

Along with the spatial pattern of the EOFs, the presence of each EOF in time 

was calculated. A power spectrum density estimate (PSD) was made from the time 

series of the presence of each EOF. The peaks in this PSD should correspond to the 

dominant frequencies that occur as each EOF increases and diminishes. The PSDs 

shown in figure 3-12 possess a number of obvious peaks.^ 

One of the peaks corresponds to the frequency of a boundary-current instabiHty 

This mode of instabiHty has a signature in the EOFs of both streamfunction and 

relative vorticity and is contained in a region near the boundary (see figures 3-12 and 

2lt has come to my attention that the MATLAB routine I used to calculate these modes has an 
T°',iV ^^*T"^^f t^o"^ of confidence intervals. Therefore, the confidence intervals shown here 
should be considered to be approximate only to within a factor of 2. Additionally, because the 
confidence mterval assumes Gaussian, white noise errors, whereas this process is deterministic and 
non-white, there may be other problems with the confidence limits. 
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3-13, EOFs number 4 and 5). The frequency of this boundary-current instability is 

0.0219 0L.^ 

A second peak that appears in the PSDs of two EOFs shown in figures 3-12 and 

3-13 seems to correspond to the (1,2) basin mode. This peak occurs at 0.0107 0L. 

The (1,2) hnear basin mode in this basin has a frequency of 0.0113 PL (figure 3-14), 

and the patterns of the streamfunction in figure 3-13 strongly resemble the basin 

mode standing waves in figure 3-14, at least in the region outside of the boundary 

current. The EOFs of relative vorticity with this frequency do not resemble the 

relative vorticity pattern for a basin mode. Possibly, the basin mode coincides in 

frequency with activity in the boundary current which would explain the shape of 

EOFs 1 and 2 of relative vorticity perturbation in figure 3-12. The similar frequency 

of the boundary-trapped relative vorticity perturbation EOFs and the basin-mod^ 

like EOFs suggests that there te a boundary current instability which r^onates with 

the basin mode. The next section will further address the role and presence of basin 

modes in these solutions. 

The peak at 0.033 pL in figure 3-12 pr^umably represents variabihty forced by 

the nonhnear interaction of the basin mode-hke variabiHty (or the boundary current 

instabihty forcing it) and the boundary current instabiHty, as the sum of 0.0219 0L 

and 0.0107 pL is 0.0326 0L. The other large peaks in the PSD are located at the 

sums and differences (and their sums and differences) of the two original frequencies 

to within the resolution of the PSD. Furthermore, the EOF corresponding to the 

peak at 0.033 PL has a smaller spatial scale than the EOFs of relative vorticity of 

the 0.0219 PL mode aad the and 0.0107 PL mode. It is entirely plausible that the 

wavenumber of the 0.033 0L mode is the sum of the wavenumbers of these two mod^ 

as it should were this EOF corresponding to a nonhnear interaction mode. 

All of the EOFs have some signal at aU of the frequencies mentioned. This could 

be reflective of the involvement of each EOF in nonhnear interaction at each of the 

of tht PSD^^ frequencies derived from EOFs are calculated as simply the frequency at the maximum 
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Figure 3-14: The upper row contours the two standing-wave streamfunction patterns 
(with an arbitrary choice of phase) for two basin modes in a square basin. The middle 
row contours the two standing-wave streamfunction patterns for two basin modes in 
a 1x2 basin. The lower row contours the two standing-wave streamfunction patterns 
for two basin modes in a 1x0.4 basin. The frequencies (in pL units, true frequencies 
not angular frequencies) and mode number of each mode are also given. 
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frequencies, but it ojuld abo be an artifact of the errors in producing the EOFs. Be- 

cai^e of the lack of orthogonality of the modes which lead to each EOF, it is expected 

that there be some leakage between the frequenci^ of the different modes. This was 

observed ux the hypothetical test case described above of the EOF decomposition of a 

hnear superposition of noninteracting basm modes. Herein, I assume that the larg^t 

magnitude peak in the spectral decomposition corresponds to the primary frequency 

of the mode involved. 

The strong activity in the northw^ comer of the basin in aU of the EOFs is the 

region where the Hnear instabihti^ d^cribed by Sheremet et al. (1997) originate, and 

apparently this is the case here as weU. In the foUowing section, it will be shown that 

even in a different-sized basin, the activity in this region is what forc^ many of the 

motions observed. 

One other main conclusion of Sheremet et al. (1997) was the presence of a reso- 

nant mode of instability. They called this mode resonant because its frequency was 

comparable to that of the basin modes in then calculation and so they expected that 

they would r^onate with the basin mod^. This mode appears to be pr^nt here as 

EOF number 3 in figures 3-12 and 3-13. 

At higher Reynolcb number, the relative vorticity EOFs, although stiU western- 

intensified, become temporally chaotic (figure 3-ll).4 Upon calculating the EOFs 

(figure 3-15) there are some periodic structures revealed, although they are not clearly 

distinct as in the lower Reynolds number cas^. Also, although the total variance has 

increased, the percentage of the variance associated with any one EOF has decreased. 

Essentially, at this point the solution is quite turbulent, and there are many modes 

of instability and nonHnear interaction pr^ent. There do not appear to be any low- 

frequency modes per se, but due to the white spectrum of all of the EOFs at low 

frequency, low frequency variabihty is expected and is present. 

However, when the EOFs of the streamfunction perturbation are examined (see 

*Here I employ the term chaotic because the time series of chaotic systems are are typically 
non-repeating and aperiodic as is this time series. No other definition of chaos is implied. 
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EOF #1, % of variance=15.7 EOF #2, % of variance=l 3.7 EOF #3, % of variance=11.5 

Figure 3-15: The EOFs of relative vorticity perturbation from the time-mean as in 
figure 3-12 but for the Re(bdy)=0.25, Re(int)=5 calculation which shows large low- 
frequency variations in figure 3-11. 
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figure 3-16), a different picture emerges. Although the variabihty of the relative 

vorticity had a broadband spectrum, there are stiE two modes of streamfiinction 

mriablHty whidi are obviously periodic. These mod^ of imtability strongly resemble 

the gravest basin mode and the (1,2) basin mode standing wave patteriK, and the 

frequencies of th^e the hnear modes agree well with the observed frequencies of the 

variabihty (see figure 3-14). Th^e modes will be discussed further in the next section. 

In the calculations where the recircidation gyre has reached the eastern boundary, 

the temporal behavior remains comphcated, but the range of variability is decreased. 

As shown in figure 2-4a, the ratio of eddy energy to mean flow ener^ is still quite 

large, but the amount of each stabilizes once the recirculation gyre reach^ the eastern 

boundary. The EOPs of an inertially-dominated solution are shown in figure 3-17. 

In summary, the temporal behavior of the single-gyre calculation is unsteady and 

comphcated, in stark contrast to the steady solutions to the wind-driven problem, 

even with hnear Rossby waves superposed. There are numerous modes of instability 

of the mean state, and these modes both force the basin modes to oscillate and 

interact nonlinearly with each other. These interactions lead to a broadband spectrum 

for many of the EOFs and for the total kinetic energy in calculations with high 

Re(int). As part of the broadband spectrum, there are low-frequency motions which 

in the oceanographic context may be significant for chmate variabihty, a topic of 

contemporary scientific interest. No low frequency pure oscillations were observed. 

3.5    Presence of Basin Modes 

Many of the preceding sections have mentioned the presence of variabihty that re- 

sembles the free basin modes of the homogeneous fluid model. Because these modes 

are only present in a closed basin, it is important to ass^s whether they are present 

here, why, and what effects they have on the mean flow because many studies of the 

western boundary current instabilities use regional models lacking these basin modes. 
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Figure 3-16: EOFs of streamfunction perturbation from the time-mean as in figure 3- 
13 but for the Re(bdy)=0.25, Re(int)=5 calculation which shows large low-frequency 
variations in figure 3-11. 
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Figure 3-17: EOFs of streamfunction perturbation from the time-mean as in figure 3- 
13 but for the Rfi(bdy)=5, Re(int)=5 calculation. 
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Since the premise of boundary-enhanced viscosity is that there are boundary pro- 

cesses too fine to resolve in a basin-wide model, it is particularly important to show 

that regional models can be used in future work to study the boundary processes pa- 

rameterized here. In this section, the presence of phenomena resembhng these modes 

is demonstrated and their effects on the instabihty of the western boundary currents 

and the general circulation are discussed. 

Sheremet et al. (1997) demonstrated that there are unstable eigeimiodes in the 

problem of linear perturbations of the steady-state solution to the single-gyre with 

the same boundary conditions presented here. Some of these eigenmodes, which they 

dubbed resonant modes had firequencies comparable to the basin modes of oscillation. 

They hypothesize that these resonant modes would resonate with the basin modes. 

As we saw in section 3.4, some of the EOFs resembled the EOFs of basin modes and 

the resonant mode. 

To test whether these modes that resemble basin modes are actually related to 

the basin modes of oscillation, a simple test was performed. The model was run with 

basins of different sizes for the same viscosity and boundary current transport. The 

first basin was the standard square basin that has been used thus far. The second 

basin was elongated in the zonal direction to double the width. In the elongated basin 

case, the wind forcing was set to zero for the eastern half of the model. The third 

basin was shortened in the zonal direction to 40% of the width. In the shortened 

basin case, the wind forcing was increased by a factor of 3.1 in magnitude.^ In this 

way, the western boundary current in the new basins is as close to the square basin as 

possible. Exact reproduction of the conditions in the western boundary current is not 

possible, but the remaining differences are minor. Only the effects of changing the 

eastern frictional boundary current and changing the wind forcing magnitude in the 

shortened basin's boundary current remain. Therefore, the primary effect of moving 

^This empirical factor that sets the strength of the wind forcing was chosen to attempt match the 
boundary current transport. If the Sverdrup balance held over the whole basin and the boundary 
layer was infinitesiraally thin the constant would be 2.5. 
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Figure 3-18: The time-meam streamfunction at y = 0.5 for the short basin, the square 
basin, and the long basin with Re(int)=Re(bdy)=l. 

the eastern boundary is the change in the reflection of waves (and basin mod^) at the 

eastern boundary. The r^ulting mean streamfunction at the north-south midpoint 

for the calculations in the three different basins m shown in figure 3-18. 

The results for the EOFs of the perturbation streamfunction from the calculations 

in the differently-sized basins are shown in figure 3-13, 3-19, and 3-21. The results 

for the relative vorticity perturbation EOFs are given in figures 3-12, 3-20, and 3- 

22. It is clear that the basin mode-like oscillations in the longer basin have a higher 

wavenumber and a different frequency, while there are no obviom modes present in 

the short basin case. 

The basin mode-Hke motions observed m figure 3-13 and 3-19 can be compared in 

shape and frequency to the linear basin mod^; some of the hnear modes were chosen 

for comparison and are shown in figure 3-14. As pointed out in the last section, 

EOF number 1 and 2 of figure 3-13 (the square basin) strongly r^emble the (1,2) 

linear basin mode. In the longer basin, figure 3-19 shows that the streamfunction 

perturbation EOFs number 1 and 2 resemble the (3,2) basin mode in standing-wave 
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Figure 3-19: EOFs of streamfunction perturbation from the time-mean as in figure 3- 
13 but for the Re(bdy)=l, Re(int)=l calculation in a long basin of twice the zonal 
extent. 
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Figure 3-20: EOFs of relative vorticity perturbation from the time-mean as in figure 3- 
12 but for the Re(bdy)=l, Re(int)=l calculation in a long basin. 

pattern and frequency while EOFs number 5 and 6 r^emble the gravest basin mode 

in standing wave frequency and pattern. Ako, EOFs number 3 and 4 (with frequency 

0.01210L) are roughly similar to the (1,2) basin mode's standing wave patterns which 

have a frequency of 0.0123 PL. 

Figure 3-20 shows the EOFs of relative vorticity for the long basin. Comparing 

with figure 3-12, it is apparent that there are similar frequency EOFs in the relative 

vorticity perturbations. These EOFs have most of thefr variability in a region closer 
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to the boundary than the EOF patterns of the streamfunction perturbation. Again, 

the lower variance EOFs appear to represent nonhnear interaction modes between the 

previous EOFs, because the frequencies are the sums and differences of the frequencies 

of the higher variance EOFs. 

In the long basin calculation, unHke the square basin calculation, some of the 

relative vorticity's EOF frequencies are distinct from the streamfunction's EOF fre- 

quencies. They share a similar frequency range, however. Since the streamfrmction 

EOFs' frequencies closely correspond to the basin mode frequencies, I propose that 

the relative vorticity EOFs represent the instabiHties that are forcing the basin modes. 

If this is correct, then we can see that the frequencies of the instabilities are relatively 

unchanged by the change of basin from square to long (0.0107 to 0.0109 /?L and 0.0219 

to 0.0211 pL). However, which basin modes are excited by these modes of instabihty 

is dependent on which basin modes share frequencies with these instabilities. Note 

especially that the nonhnear interaction mode at represented by EOF 6 in figure 3- 

20 has no corresponding large variance streamfunction EOF in figure 3-19. This is 

precisely as one would expect given that there are no basin modes with a frequency 

this high. 

Why is it that the streamfunction EOFs resemble the basin modes while the 

relative vorticity EOFs seem to represent the boundary layer phenomena? Of course, 

it is important to remember that the EOF is an ex post facto analysis which has 

no information about the underlying dynamics. The goal of the EOF is simply to 

present a set of orthogonal functions, beginning with the one responsible for the 

maximum percentage of the variance to the one responsible for the least. In these 

models, typically the magnitude of the streamfunction is not significantly greater in 

the boundary current while the relative vorticity is much greater in the boundary 

current (see figure 2-5). Thus, in considering the modes which will have the greatest 

variance the large scale of the basin modes will be dominant since the streamfunction 

has smaller point-by-point excursions. However, in considering the relative vorticity, 
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small changes in the location of the extremely large -values of relative vorticity that 

are pr^ent near the boundary seem to cat^e greater wriance than the large-scale, 

but weaker magnitude basin modes. 

So, comparing the long basin to the square basin, it seems that changing the basin 

dimension without significantly changing the forcing seeam to leave the boundary 

current variabiUty unchanged to within measurable limits. However, different basin 

modes are excited with different amphtudes because their r^onant frequencies change 

relative to that of the basin. In the square basin, the (1,2) basin mode was excited. 

Thus, the relationship between the boundary current instabihties and the basin modes 

strongly affects which modes are excited. 

Figure 3-14 shows that the frequencies of the free basin modes are reduced in 

the shortened basin. The maximum frequency is that of the gravest mode; in the 

shortened basin it is 0.0094 01. All of the other basm modes have lower frequencies. 

Since the western boundary current instabihti^ have been carefully preserved when 

the eastern boundary is moved, their frequencies should be relatively unchanged, 

m figures 3-12 and 3-20, the lowest frequency western boundary instability peak 

appeared at 0.0107 0L. Thus, we expect that in figure 3-21 the frequencies of the 

disturbances in the western boundary current should be higher than all of the basin 

modes' frequenci^. We therefore expect that no basin modes wiU be excited. 

Examining the frequencies of the peaks that are pr^ent in the shortened basin, 

all are higher in frequency than the gravest mode frequency (0.0094 0L). These 

frequencies are slightly higher (about 15%) than the frequncies in the square basin 

and the long basin. Apparently, either the lack of the basin modes has changed the 

boundary current instabilities (unlikely), the EOFs are misleading^, or the boundary 

current instabilities are affected by the change in the basins. 

I beheve it is mcBt hkely that the setup of the short basin is not perfect. Initially, 

I performed the calculation in a short basin with a wind forcing of the appropriate 

^This is highly unlikely as the same frequencies are found in the PSD of vorticity at points in the 
boundary layer. 
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Figure 3-21: EOFs of streamfunction perturbation from the time-mean as in figure 3- 
13 but for the Re(bdy)=l, Re(int)=l calculation in a short basin of zonal extent 
0.4. 
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Figure 3-22: EOFs of relative vorticity perturbation from the time-mean as in figure 3- 
12 but for the Re(bdy)=l, Re(int)=l calculation in a short basin of zonal extent 0.4. 
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strength so that the Sverdrup solution would have the same maximum in the three 

basins. However, this was not effective, as the boundary current instabilities changed 

frequency. Thus, while I had designed the 0.4 zonal extent of short basin to tune all 

of the basin modes below the boimdary current instabilities, the resulting boundary 

current instabilities with wind forcing 2.5 times that in the square basin were at a 

frequency which was lower than any in either the square or the long basin (0.0081 /?L). 

Also, the boundary current was much weaker in this short basin than in either the 

long basin or the square basin. By increasing the wind forcing to 3.1 times the square 

basin forcing, I was able to bring the frequencies of the boundary current instabilities 

closer to those in the calculations in the other basins and above the frequency of the 

gravest mode (0.0094 PL). Unfortunately, the consequence of empirically changing 

the wind forcing to re-tune the frequency of the boundary current instabilities is that 

these frequencies can no longer be used to compare to the frequencies in the square 

basin and the long basin to determine whether the absence of basin modes in the 

short basin affects the boundary current variabiUty frequencies. 

In the short basin, even without the basin modes there are nonlinear interactions 

similar to those commented upon above regarding figure 3-12, except these interac- 

tions are now clearly present in the streamfunction as well as the relative vorticity 

(figure 3-22). Without basin modes, the structure of the boundary current instabil- 

ities and the nonlinear interactions of the eddies in the boundary current can now 

be observed in the EOFs of the streamfunction as well as in the EOFs of relative 

vorticity. 

It would be a nice confirmation that the counter-rotating gyres were forced by 

basin modes were they shown to disappear when the basin modes disappear in the 

short basin calculation. There is no counter-rotating region in the short basin at this 

Reynolds number. However, there is also no counter-rotating region in the square 

basin or the long basin at this Reynolds number. This is either due to the fact that 

the basin modes are weaker at this Reynolds number (they are) or that the increased 
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frictional decay rate damps the eddy driven motion. Unfortunately, a higher Reynolds 

number calculation in the short basin will not jield sensible results because the basin 

is so short that the recirculation will reach the eastern boimdary at a Reynolds number 

only slightly higher than one. 

I also performed a similar comparfeon between a square basin calculation with 

Re(bdy)=3 and Re(int)=3, and a basin of double the dimension ako with Re(bdy)=3 

and Re(int)=3. The residts in that case were similar in that different basin modes were 

excited in the larger basin. However, since the length and strength of the boundary 

current changed (both are approximately doubled in a basin twice as large), the 

western boundary current instabilities also changed somewhat, making comparison 

more difficult.- However, it is important to note the presence of the basin modes 

persists even at higher Reynolds number. 

In section 3.3 the argument is made that the counter-rotating gyre is likely to 

be called by large-scale regions of eddy flux convergence. These regions resembled 

the nonlinear interaction of one of the basin modes, but do the larg^t EOFs in 

a calculation with significant counter-rotating gyr^ resemble the basin modes in 

shape and frequency? Figure 3-17 shows the EOFs from the Re(bdy)=5, Re(int)=5 

calculation which has a pronounced counter-rotating gyre and a pronounced region 

of eddy flux convergence causing it (see figure 2-6b for the eddy flux convergence 

and the tim^mean streamfimction of this calculation). The gravest basin mode has 

most of the variance in this calculation, and the (1,2) basin mode is next. The 

expected pattern of the nonlinear interaction of the grav^t basin mode is very similar 

to the eddy flux convergence pattern. The solution given by Pedlosky (1965b) for 

the nonhnear steady circulation driven by the (1,2) mode has two counter-rotating 

gyres below y=l/2. Since the coimter-rotating gyre in the presence of steady wind 

forcing remains to be addressed, it is unclear at this point which of the two basin 

modes is responsible for the counter-rotating gyre in this calculation. In either case, 

there is significant variabiHty in the basin modes, and the expected patterns of eddy 
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flux convergence due to the modes axe consistent with the existence of a counter- 

rotating region. Pursuing the dynamics of the counter-rotating gyres further than 

these prehminary remarks is outside the scope of this study. 

In summary, the basin modes of osciUation are ubiquitous in these calculations. 

They play an important role in the dynamics, and they often dominate the variance 

of the streamfunction perturbations about the mean. It is Ukely that they force the 

counter-rotating gyre. They appear to be forced in the region of the turbulent bound- 

ary layer, and which modes resonate depends how the frequencies of the instabihties 

in that region compare to the basin mode frequencies. Because the gravest basin mode 

has the highest frequency, whether the frequency of this mode is higher or lower than 

those of the boundary current instabilities determines whether these modes will be 

present or not. 

3.6    Energetics 

Although most of the discussion in this dissertation deals with the removal of vorticity, 

the method of removal of kinetic energy from the mean flow as a parametric function 

of Re(int) and Re(bdy) is also helpful in understanding the role of eddies on the mean 

flow. Importantly, unHke vorticity, the energy can be locaUy removed, this makes it 

unclear how enhancing the viscosity in only a thin frictional sublayer will be able to 

affect the basin-wide energy budget. This section deals with these issues of energetics. 

One way to formulate the equation for the kinetic energy of the mean flow is 

dt ^ ^ 

S'M V^^- (S)'- (0)^-2 (S)] -2..S + ^sinM 
+<5K^^-V)-u. (3.10) 
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The terms after the equal sign in this equation are local sinks and sources of energy. 

The terms proportional to 6% are the lateral friction's removal of energy. The term 

proportional to 5s is the bottom friction's removal of energy. The term proportional 

to 5j is the production of turbulent kinetic energy. The remaining term is the wind's 

input of energy to the time-mean flow. 

As pointed out in chapter 2, aU of the frictional terms are negative definite except 

for Sf^V^E which represents a smoothing of sharp energy gradients. However, in this 

section we will see that the cumulative effect of frictional terms is always to remove 

wind power upon intepation over the basin. 

Figure 3-23 shows that the turbulent kinetic energy production rate (as defined in 

equation 3.10) can be of either sign, and is located primarily at the lower edge of the 

recirculation gyre. It is important to note that this is not a unique representation of 

the kinetic energy production rate, as more or less of the flux terms in equation 3.10 

could sensibly be added to this term. The basin integral of this term is unique, 

however, and with increasing Re(bdy) or Re(int), the basin-integrated production 

rate of turbulent kinetic energy increases both in absolute magnitude and relative to 

the wind power supply to the mean flow. At the same tune, the frictional dissipation 

rate of kinetic energy relative to the wind power decrease with increasing Re(int) 

and Re(bdy) (see tables 3.4 and 3.3). Thus, the removal of energy from the mean flow 

is increasingly due to the effects of eddies as the calculations become more invfecid. 

The observations of Webster (1961) measured the local turbulent kinetic energy 

production (as defined in equation 3.10) to be transferring energy from the meanders 

to the mean flow in some locations. These observations have often been interpreted as 

evidence of turbulent eddi^ strengthening the mean flow of the Gulf Stream. These 

observations can be understood in m a larger context in figure 3-23. Locally, the 

production of turbulent kinetic energy can be of either sign, while the basin-wide 

integral is always in a sense to transfer energy from the mean kinetic energy to the 

turbulent kinetic energy, as shown in table 3.3. 
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Figure 3-23: Source and sink terms of mean flow kinetic energy as defined in equa- 
tion 2.14 for the Re(bdy)=3, Re(int)=3 calculation, (a) shows the turbulent kinetic 
energy production rate, (b) shows the frictional dissipation rate, (c) shows the wind 
power. Below each figure the basin-integrated total is given. Below (c) the contribu- 
tion of the counter-rotating gyre to the wind forcing is also given. Contour intervals 
are 2 units (centered on 0) in (a) and (b) and 0.2 units in (c). (d-e) are the sources and 
sinks of mean flow kinetic energy as in (a-c), but for the Re(bdy)=0.25, Re(int)=8 
calculation, (f-h) are the sources and sinks of mean flow kinetic energy as in (a-c), 
but for the Re(bdy)=5, Re(int)=5 calculation. The sum of sinks and sources is not 
exactly zero due averaging errors in the eddy production and time-stepping errors. 
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Although it K tempting to interpret the spatial structure of figure 3-23 as indica- 

tive of the location of the turbulence's effects on the mean flow, these terms do not 

d^cribe the full eddy-mean flow interaction became there are other flux terms in 

the Reynolds-averaged energy equation (equation 3,10) which are equally important. 

These flux terms vanish upon integration over the basin, so it is ser^ible to consider 

the turbulent kinetic ener^ production as a basin-wide integral. However, it is in- 

vaUd to ascribe physical meaning to the local value of the production terms without 

also acknowledging the flux terim. Thus, figure 3-23 fe not a unique representation 

of the terir^ in the energy equation. This figure was produced only to compare to 

the results of Webster (1961) (who i^ed similar definitiom) and to give some idea of 

how one representation of the energy equation looks. 

As shown elegantly in Plumb (1982), even the physical meaning of the basin- 

integrated results is tentative, as it depends on what definition of eddy and mean is 

i^ed. For reasons stated in the introduction, in this dissertation the time-mean is used 

throughout to define the mean state. Thus, just as the choice of mean importantly 

determined the meaning of eddy in the vorticity dsnaamics, the energeti<s mentioned 

here are abo subject to this definition. 

The mean flow energy budget for the entire basin is obtained by integrating the 

energy equation. 

= // ^M 
.2^     fd'r' V^E- B^ip ^ip 

-H 

dx^)       \dy^J      ~\dxdy 

jj {-2SsE + Sl^FW • V) ■ u + isin(7ry)) dM 

<m 

(3.11) 

The ener^ in the mean flow can be removed locally by lateral or bottom fi-iction or 

by turbulent kinetic energy production. Tables 3.1, 3.2, 3.3 and 3.4 give numerous 

details about the basin-integrated energy budgets for the different calculations. 

In section 2.2, it is pointed out that the basin-integrated vorticity budget depended 

only on the viscosity at the boundary, not in the interior. The energy budget, on the 
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other hand, does not obviously single out the value of the viscosity in any particular 

region, so how is it that boundary-enhanced viscosity also controls the energy of the 

solution? There are two mechanisms. First, as shown in figure 3-23, the frictional 

terms are ahnost exclusively Hmited to the region of the frictional sublayer/ Thus, 

increasing the viscosity there will increase the friction energy removal from the mean 

flow there. A second mechanism is the reduction of wind power. The wind power 

is proportional to the correlation of wind stress and fluid velocity Therefore, if the 

vorticity dynamics are such that the circulation is decreased, then the wind power 

will also be decreased. Scott and Straub (1998) have proposed a similar scheme 

previously Even though the vorticity dynamics are analyzed in terms of fluxes and 

the energy is analyzed as local sinks, the two are closely linked through the wind 

power's response to the circulation. Of course, this is only a physical interpretation 

of the mathematical fact that since the energy equation is formed by multiplying the 

vorticity equation by ^, only the trivial solution of V^ = 0 satisfies one without the 

other. 

Figure 3-23 also compare the energetics of a homoparic pair. The member of each 

pair with higher Re(int) has a higher rate of removal of energy from the mean flow 

by turbulent kinetic energy production. For the homoparic pair shown in figure 3-23, 

the member of the pair with Re(int)=8 has only 40% of its energy input removed by 

frictional dissipation while the member of the pair with Re(int)=3 has 45% removed 

by frictional dissipation. Also, the results for the basin-integrated energy budgets for 

the two homparic pairs compared in section 3.2 are typeset in bold in tables 3.1, 3.2, 

3.3 and 3.4 so that they maybe easily compared. 

In section 3.2, the homoparic pair member with higher Re(int) was shown to 

have more fine scale vorticity features. The eddy field of the homoparic pair member 

with larger Re(int) is also more energetic and more energetically variable than the pair 

^This form of the frictional dissipation is not unique as frictional fluxes can be added or sub- 
tracted. However, all of the frictional terms including the flux convergences are large only in the 
region of the frictional sublayer. 
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member with smaller Re(iiit). For example, the R«(bdy)=0.25, Re(mt)=8 calculation 

has a total kinetic energy of 127 while the Re(bdy)=3, Re(iiit)=3 calculation has a 

total kinetic energy of 102 (see table 3.1). This is true even though the kinetic energy 

of the mean flows of these calculation are 30.9 and 37.7, respectively (see table 3.2). 

The variability of the total kinetic energy is also larger in the pair member with 

larger Re(int) (see table 3.1). By examining tables 3.1 and 3.2, it becomes clear 

that the same is true of the Re(bdy)=0.5, Re(int)=3 and Re(bdy)=0.25, Re(int)=5 

homopaxic pair. So, examining the energetics of the homoparic paire reveals that the 

pair member with larger Re(int) has more energy which is also more variable and its 

turbulent kinetic energy production is respomible for removing a greater portion of 

the wind power applied to it. 

The wind power term can be of either sign, as the work done differa depending 

on the solution's alignment with the wind str^s. In particular, in the region of the 

counter-rotating gyres the wind power remove ener^ from the basin. Figure 3- 

23c shows the energetics of an inertially-dominated calcxilation. In section 3.3 it is 

proposed that perhaps the existence of the counter-rotating gyr^ can be explained by 

their reduction of the wind power input. Interestingly, d^pite a large and pronounced 

counter-rotating gyre, the energy input to the circulation is decreased by sHghtly le^ 

than 10% by this gyre when compared to the power that would be apphed to a solution 

with the same streamfunction everywhere except in the counter-rotating region where 

^ is set to zero. In all of the inertiaUy-dominated equiUbria, the bulk of the removal of 

energy is performed by the turbulent kinetic energy production. However, if one were 

to fill the entire basin with a smgle gyre rotating in the same direction as the wind, 

this would likely represent a more significant increase depending on the strength of 

the basin-filling circulation. 

The results in the tables and graphs in this section are particularly subject to 

numerical errors including errors in averaging of the temporally chaotic calculations. 

See section C.5 for a disct^ion of the errore. 
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Re(bdy)= 0.25 0.5 1 3 5 7 
Re(int)=0.5 5.5 

(5.5-5.5) 

6.3 
(6.3-6.3) 

Re(int)=l 6.5 
(6.5-6.6) 

8.2 
(8.1-8.2) 

11.2 
(11.1-11.2) 

Re (int)=3 20.5 
(17.5-23.8) 

31.0 
(23.6-37.8) 

63.6 
(41.8-84.8) 

102 
(87.2-110.7) 

Re (int)=5 49.6 
(32.0-65.8) 

91.8 
(60.1-118) 

253 
(249-256) 

334 
(329-342) 

342 
(329-357) 

Re(int)=7 89.0 
(67.7-101) 

280 
(260-293) 

323 
(308-349) 

400 
(396-407) 

439 
(429-449) 

Re(int)=8 127 
(82.6-158) 

298 
(289-312) 

Re(int)=9 276 
(249-296) 

Table 3.1: Time-mean of total kinetic energy value and range of variability (in paren- 
theses) after spin-up as a function of Re(bdy) and Re(int). Compare with figure 3-11. 

Re(bdy)= 
Re(int)=0.5 
Re(int)=l 
Re (int)=3 
Re (int)=5 
Re(int)=7 
Re(int)=8 
Re(int)=9 

0.25 

6.1 
8.1 
14.0 
24.2 
30.9 
80.8 

0.5 
5.5 
6.7 
13.5 
30.5 
87.4 
86.7 

6.3 
8.3 
19.7 
91.1 
96.2 

37.7 
109.8 
114.1 

106.4 
109.9 

Table 3.2: Kinetic energy of time-mean flow as a function of Re(bdy) and Re(int). 

Re(bdy)= 0.25 0.5 1 3 5 7 
Re(int)=0.5 0% 
Re(int)=l 7% 16% 16% 
Re(int)=3 41% 43% 49% 55% 
Re(int)=5 48% 59% 54% 61% 61% 
Re(int)=7 55% 60% 62% 63% 72% 
Re(int)=8 59% 59% 
Re(int)=9 60% 

Table 3.3: Basin-integrated percentage of power input to mean flow removed by 
turbulent kinetic energy production as a function of Re(bdy) and Re(int). This is an 
independent calculation firom table 3.4, so the extent to which the two do not add up 
to 100% indicates the typical error. 
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Re(bdy)= 0.25 0.5 1 3 5 7 
Re(int)=0.5 100% 
Re(mt)=l 93% 84% 84% 
Re(int)=3 60% 57% 51% 45% 
Re(int)=5 50% 44% 44% 41% 39% 
Re(int)=7 43% 39% 39% 34% 33% 
Re(int)=8 40% 39% 
Re(int)=9 40% 

Table 3.4: Basin-intepated percentage of power input to mean flow removed by lateral 
friction as a function of Re(bdy) and Re(int). 

In summary, the energy budget of the mean and eddy flow reveals that the eddies 

are increasingly responsible for the removal of wind power as the solutions become 

more inv^cid. This is true even for the homoparic pairs, where the member with 

larger Re(int) has more energy, more variabiUty in energy, and more removal of wind 

power by turbulent kinetic energy production. The spatial distribution of energy 

terms is complicated^ non-trivial and potentially misleading because of the lack of 

unique definitioi^ of energy transfer. This complexity is the reason that an emphasis 

is placed on vorticity dynamics in this di^ertation as opposed to energetics. 

3.7    Bottom Friction 

Some calculations with bottom friction were also performed so that the results in this 

dissertation can be placed in context with other calculations using bottom friction. 

The effects of bottom friction seen here are making the flow laminar, fluxing vorticity 

across mean streamHnes (especially in the recirculation gyre), reducing the amount 

of large-scale variabiUty, and removing a small amount of vorticity through the slip 

boundaries. It is the relative siz^ of the boundary layer scales which determine how 

the addition of bottom friction will affect the solution. 

If either the Stommel width or the Munk width is larger than the Charney width, 

the solution is ^entially hnear, closely r^embUng the Stommel (1948) and Munk 
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(1950) solutions.   Actually, Munk and Carrier (1950) calculated solutions to this 

problem on a mechanicaJ computer! 

If the Stommel width is larger than the Munk width, at least in these simulations, 

it always tended to make the flow laminar, regardless of the Charney length. This 

is Ukely due to the fact that the shear caused by the lateral friction is crucial to 

eddy formation in this model. This agrees with Veronis (1966b), who studied the 

inertial Stommel model with no lateral friction and found steady solutions. However, 

unHke in Veronis' calculations, there is always a lateral friction sublayer in these 

calculations. The no-sHp boundary condition requires that the sublayer change the 

shear very near the boundary significantly Thus, unhke in Veronis' calculation the 

solution may satisfy both the Fj0rtoft (1950) instabiHty criterion. The Charney and 

Stern (1962) instabiUty criterion appears to always be satisfied in these calculations. 

Thus, it is possible that if it were numerically feasible to make a calculation with 

a greater separation between the frictional scales and the Charney scale then the 

solution might not be laminar. It appears that here, however, for all of the cases 

where 5i> SS>SM, the damping rate of the bottom friction is just too rapid for the 

instabilities to arise. In the laminar or nearly laminar solutions, the eddies play Httle 

role, and the dynamics are essentially those of Veronis (1966a), except with a lateral 

friction sublayer where the frictional boundary conditions are achieved. 

If the Stommel width is sHghtly smaller than the Munk width, the bottom friction's 

primary effect is still to decrease the amount of variabiHty. To demonstrate the subtle 

interplay of the bottom friction and the lateral friction in eddy production consider 

figure 3-24. Figure 3-24 shows the mean streamfunctions and eddy flux convergences 

for three calculations with bottom friction as weU as lateral friction. Figure 3-24a has 

some important eddy activity and is western-intensified, while figure 3-24b has very 

Httle eddy activity and has a large recirculation gyre. Interestingly figure 3-24a has 

the same bottom friction as figure 3-24b, and has a larger lateral viscosity near the 

boundary In an unintuitive result, raising the viscosity produced a greater number, 
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not fewer, eddies in this calculation. 

Note that the laminar solutions may not be very westem-intemified despite a 

relatively large Stommel width. In figure 3-24b there is wry little eddy activity when 

compared to figure 3-24c. It is also true that figure 3-24b is roughly as western- 

intensified as figure 3-24c. However, figure 3-24b is more vfecous than figure 3-24c. 

Thus, the Stommel width do^ not have a huge effect on w^tern-intensification when 

it is smaller than the Munk width. 

If the Stommel width is much smaller than the Munk width, and both are smaller 

than the Chaxney length, the bottom friction plays two roles, in figure 3-25c and in 

figure 3-24c, the bottom Mction is very small, and the eddies are quite active. The 

flux across mean streamhn^ B shown in figure 3-25c. 

The bottom fiiction's first role when 6s <. 6M is that it does remove a small 

amount of vorticity from the basin (as anticipated by equation 2.16). Although the 

no-slip boundary conditions guarantee that the bottom friction removes no vorticity 

through the eastern and western boundaries, it can and do^ remove a small amount 

through the northern and southern boundari^. This is mdicated by the non-zero 

■value of the bottom friction flux at i^=0 in figures 3-25. 

In figure 3-25, the crc«s-streamhne flux of vorticity carried by the bottom friction 

firet increases then decreases with Ip. This result submits to simple interpretation. 

Because of the no-sHp boimdary conditions on the eastern and western boundaries, 

the bottom friction cannot remove vorticity there. So, hke the eddy flux of vorticity, 

the bottom friction transfers its vorticity transport to the lateral friction in a sublayer 

near the no-sHp boundary to be removed. This transfer results in a divergence of the 

bottom friction vorticity flux as ^ approaches zero, which is what causes the change 

from increasing to decreasing flux magnitude with decreasing Ip in figure 3-25. Even 

a Hnear solution of the homogeneous model with both bottom and lateral friction 

exhibits this behavior. 

The second, l^s obvious role of the bottom friction when 6s < 5M is that it 
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Figure 3-24: (a) The time-mean streamfunction contours are superimposed on the 
eddy flux convergence shaded for the Re(bdy)=0.25, Re(int)=5, no-shp calcula- 
tion with bottom friction ((JM(bdy)=0.0317, (JM(int)=0.0117, 55=0.003). Lighter 
shading denotes convergences (which remove vorticity of the sign of the wind in- 
put); darker shading denotes divergences, (b) is similar to (a) but for Re(bdy)=5, 
Re(int)=5 ((5M(bdy)=0.0117, 5M(int)=0.0117, <Js=0.003). (c) is ((5M(bdy)=0.0117i 
(5M(int)=0.0117, 5s=0.001). For comparison (d) shows the Re(bdy)=5, Re(int)=5 cal- 
culation without bottom friction (5M(bdy)=0.0117, (5M(int)=0.0117, ^5=0). 5/=0.02 
for all the calculations. 
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Figure 3-25: These plots show the vorticity flux acro^ mean streamhnes for three 
no-slip calculations with bottom friction. Shown are the eddy flux outward which 
is {fi,^ u'C • fids), the lateral friction flux outward which is (- §^^ Sl^VC • Ms\ the 

bottom friction flux outward which is (f^^ dsVlp ■ fids), and the wind forcing within 

that streamline which is (- J^<^^ sin(7ry)dM). The runs shown in (a-c) as those in 
figure 3-24a-c. ^ 
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is the primary mode of transport across mean streamlines in the recirculation gyre. 

This is true even in the presence of a strong eddy flux. In fact, in figures 3-25a 

and 3-25b, the bottom friction flux is greater than the forcing, which requires an 

eddy flux or a lateral friction flux to add vorticity to strengthen the recirculation to 

compensate. This pecuUar overcompensation appears to vanish for smaller Stommel 

widths as in figure 3-25c, but it is plain that it is easier to remove vorticity from the 

recirculation gyre by bottom friction than by eddy fluxes. Comparing figure 3-24c to 

figure 3-24b, it is clear that not only is there less eddy activity in the case with larger 

bottom friction, but also the recirculation gyre is weaker by a factor of nearly three. 

The larger bottom friction damps the recirculation gyre by making the transfer of 

vorticity across streamhnes more efiicient. 

Note the role of the lateral friction sublayer when 6s «; 6M- It is accepting 

and removing through the western boundary almost as much vorticity flux from the 

bottom friction flux and eddy flux in figure 3-24c as it is in figure 3-24d (0.61 versus 

0.70).^ However, the removal of this vorticity goes much more smoothly in figure 3- 

24c than it does in figure 3-24d. As the lateral viscosity is the same in these two 

calculations, this must have to do with the gradient of C in the frictional sublayer. 

Figure 3-26 shows C as a function of x within the frictional sublayer at a number 

of points along the boundary. In the calculation with bottom friction, C is always 

decreasing or constant as one proceeds away from the boundary, so the frictional fiux 

is always out of the basin. In the calculation without bottom friction, the gradient of 

C can be of either sign, depending on where in the sublayer it is evaluated. 

The changes in the sign of the gradient of C are related to the removal crisis and 

reversal of sign of the eddy flux divergence in the sublayer which was pointed out in 

section 2.3.2 and to the small vortex trapped in the northwest corner also pointed 

out in section 2.3.2. Apparently, these effects are significantly weaker when bottom 

friction is present. Perhaps the instabihties which form the eddies were the cause of 

^The total vorticity removed from the basin by all frictional fluxes is 0.64, these are estimates of 
the flux through only the western boundary by lateral friction. 
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Figure 3-26: Th^e plots show C for the calculation shown in figures 3-24c-d as a 
function of x within the western boundary's frictional sublayer at different values of y: 
(a) y=0.9, (b) y=0.8, (c) y=0.6, and (d) y=0.4. SoHd lines denote the calculation with 
bottom firiction (from figure 3-24c) and dashed Imes denote the calculation without 
bottom friction (from figure 3-24d). The lateral viscosity is the same for the two 
calculations. 
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the removal crisis as the vorticity gradient increased with Reynolds number. In this 

case, the bottom friction may have stabiUzed or reduced these modes. 

Another possibihty is that it is an overgrown recirculation gyre which begins the 

removal crisis. The efficient transport of vorticity out of the recirculation gyre by bot- 

tom friction appears to be an eiTective counter to the growth of a strong recirculation 

gyre in figure 3-24. 

It is very important to the discussion in section 4.4.4 to note that it is possible to 

change or postpone the removal crisis by changing the other ingredients in the crisis 

other than the lateral friction. 

The third effect of bottom friction when Ss < 6M is that since the bottom fric- 

tion is not scale selective (unhke the lateral friction) all of the modes of instabiUty, 

including the global basin modes, are damped equally rapidly by bottom friction. 

This greatly weakened or removed the counter-rotating gyres from the calculations 

shown in figure 3-24, because they are forced by these large-scale modes. In the case 

of lateral friction only, these modes are relatively inviscid due to their large scale. 

So, a calculation with both lateral friction and bottom friction has weaker large-scale 

time-dependent features as compared to a calculation with lateral friction only. 

All of the effects of bottom friction may be sxmimarized by contrasting figure 3- 

24d with figure 3-24c. These two calculations have the same lateral friction viscosity 

and inertial boundary layer width. Figure 3-24d has more eddy activity, including 

large-scale modes which cause a counter-rotating gyre. Its recirculation gyre is much 

stronger (indicating a lack of the efficient bottom friction flux across mean streamlines 

there). Finally, the circulation of figure 3-24d is significantly stronger, in small part 

due to the lack of vorticity removal by bottom friction through the northern and 

southern boundaries. 
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3.8    Slip Boundary Conditions 

In the other sections of this chapter, and in all of chapter 2, the calculations vised 

no-sUp boundary conditions (^ = 0) on the eastern and western boundaries. In this 

section, and ako in some of Chapter 4, slip boimdary conditions (C = 0) on all sides 

of the basin wiE be used for comparison. Changing the boundary conditioiK typically 

brings about a large difference in the solutions' character. Some of the differences 

found here will be explored in this section, while others that involve the interaction 

between multiple gyres will be explored in the next chapter. 

Barotropic calculations with slip boundary conditions transition to inertially- 

dominant solutions at a much lower Reynolds number than do no-slip calculations. 

This is shown clearly in Sheremet et al. (1997). This result has also been con- 

firmed using the steady-state models d^cribed in Appendix B. When eddi^ are 

permitted, the sUp calculations remain more prone to inertial domination; Boning 

(1986) showed an example of a time-dependent inertially-dominated solution with 

Re(int)=Re(bdy)=1.5. 

However, enhancing the frictional sublayer still has an effect, though a smaller 

value of Re(bdy) must be used for a given value of Re(int) to prevent inertial dom- 

inance. Figure 3-27(a-b) show the time-mean of the streamfunction of a w^tem- 

intensified and an inertially-dominated solution with the same value or Re(int) and 

slip boundary conditions. The streamfunctions are superimposed on the eddy flux 

convergences. 

Compare figure 3-27a with figure 3-27c. The former is a slip boundary condition 

calculation with Re(bdy)=0.1 and Re(int)=2.5. The latter is a no-slip boundary con- 

dition calculation with Re(bdy)=0.5 and Re(int)=5. The mean fields are surprisingly 

similar given the different boundary conditions. Ako, although the mean dynamics 

are quite different, the pattern of the eddy flux convergence field is very similar. The 

magnitudes of the eddy flux^ are quite different, but the similarity of the patterns, 

including even the interactions with the recirciilation gyre, is stunning. Apparently, 
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0.00 

Figure 3-27: (a) The time-mean streamfunction contours are superimposed on the 
eddy flux convergence shaded for the Re(bdy)=0.1, Re(int)=2.5, sHp boundary con- 
dition calculation. Lighter shading denotes convergences (which remove vorticity of 
the sign of the wind input); darker shading denotes divergences, (b) is similar to 
(a) but for Re(bdy)=2.5, Re(int)=2.5. (c) shows a no-shp calculation (Re(bdy)=0.5, 
Re(int)=5) which is qualitatively similar to the slip calculation shown in (a). Contour 
interval is 0.2 for (a) and (c) and 20 for (b). 
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there is enough which is similax between these solutions that the structure of the eddy 

field can take a similar form. Even the counter-rotating gyres are present in the sHp 

boundary condition calculations, d^pite the fact that the eddy activity is not nearly 

as strong in figure 3-27a as in the no-shp calculations such as in figure 3-27c. 

Figure 3-28 shows that, at least in the boundary-enhanced viscosity case, the 

cross-streamline flux of vorticity is still carried by the eddy flux for streamlines where 

ip is greater than approximately 0.6. Thus, the eddi^ are not doing as much of 

the work in the slip calculation as in the no-slip calculations, but they still remove 

almost all of the vorticity input to the recirculation gyre. Becaiae the slip boundary 

conditions do not easily generate eddy activity, it is in fact possible to reach a steady- 

state inertially-dominated solution m some cases. This accentuate the critical role 

of the eddies in fluxing vorticity to the boundary. Figure 3-27b, which is steady, 

has transport more that 800 times the linear Mimk solution's transport. Without 

the eddies, the circulation must be extremely strong for the direct action of lateral 

viscosity to reach the iimermc^ streamHne at high Reynolds number. 

The reduced eddy activity may be attributable to the reduced vorticity gradients. 

In figure 3-29, the absolute vorticity of the three calcxilations pr^ented in figure 3-27 

are contoured. Neither of the sHp calculations has comparable vorticity gradients 

to those found in the western boimdary layer of the no-slip calculation. Given that 

the stability criterion for shear instabihty depends directly on the absolute vorticity 

gradient, it is no surprise that shp calculation have weaker eddy activity. Although, 

all of these calculations, including the steady one, satkfy the Charney and Stern 

(1962) and Fj0rtofl; (1950) necessary (but not sufficient!) instabihty criteria. More 

information on thee necesary criteria and frictional instabilitie can be found in 

texts such as Drazin and Reid (1981). 

Viscous instabilities, such as the Tollmien-Schlichting waves and those described in 

lerley and Young (1991b) and lerley (1993) are also sensitive to the vorticity gradients 

near the boundary. lerley and Young (1991b) found that the onset of these instabihties 
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Mean Streamfunction Meon Streomfunction 

Figure 3-28: These plots show the vorticity flux across mean streamUnes for two 
calculations with sHp boundary conditions. Shown are the eddy flux outward which is 
[f^c "'C • ficJs), the friction flux outward which is (- f^^ (^M^C • nc?s), and the wind 

forcing within that streamline which is (- Jf^^^^ sin(7ry)d?4). (a) shows the result for 
the Re(bdy)=0.1, Re(int)=2.5 calculation, (b) shows the result for the Re(bdy)=2.5, 
Re(int)=2.5 calculation. See figure 3-27 for location of mean streamhnes for these 
calculations. The sum of the frictional fluxes at the boundary is the frictional removal 
from the basin. The sum of the eddy fluxes at the boimdary is zero. See section 2.2.1 
for details. 

occurred at a much smaller Reynolds number with no-slip boundary conditions than 

with shp boundary conditions. The results here are consistent with this result. 

The reduced generation of eddy activity near the boundary in the slip calculations 

is the most significant diflterence between the slip and no-slip calculations from the 

perspective of this dissertation. In Chapter 4, the lack of boundary-produced eddies 

in the slip calculation leads to an entirely different behavior for the slip and no-sHp 

calculations. It seems likely that a realistic oceanic boundary would produce many 

eddies, so in this respect it seems that the no-shp boundary condition is better for 

reproducing oceanic conditions. 

The enhanced frictional sublayer is once again able to prevent inertial domination 

in the case of slip boundary conditions, although the eddy fluxes do not carry the 
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Figure 3-29: These plots show the absolute vorticity (5f C + y) for the calculations in 
figure 3-27. The figure lettere corr^pond to the results from the same calculatioi^. 
The contour interval is 0.05 for (a) and (c) and 0.5 for (b). Regions of negative 
vorticity are shaded. 
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vorticity as close to the boundary as in the no-sUp calculations, and the eddies are 

significantly weaker. This is Hkely to be due to the fact that the absolute vorticity 

gradients are not as strong in the boundary current with shp boundary conditions. 

Thus, there are far too few eddies formed near the boundary with slip boundary 

conditions. Quite surprisingly, considering the qualitative differences between shp and 

no-shp calculations at low Reynolds number, it is possible to find a no-shp calculation 

which is very similar to the shp calculation when boundary-enhanced viscosity is used. 

3.9    Conclusion 

Once large Re(int) has been reached, the single-gyre model exhibits many interesting 

behaviors. Through the use of boiuidary-enhanced viscosity presented in the last 

chapter, this Hmit can be studied with western-intensified solutions. In this chapter, 

some of the interesting effects of the eddies that arise in the case of large Re(int) have 

been presented. 

The structure of the boundary layer in the main region of eddy activity is novel 

in this context, although it resembles the boundary layer structiu-e proposed by Ed- 

wards and Pedlosky (1998) for transport across the equator. In the region where 

the Charney boundary-layer solution exists, the effect of the eddies is to widen the 

region of frictional influence by transporting vorticity to the region of dissipation. In 

the region where the Charney solution no longer exists or is unstable, however, the 

primary balance of vorticity in the boundary layer (outside of the frictional sublayer) 

is between the /?-flux divergence and the eddy flux convergence. 

In the quiescent regions where the velocities are small, the single-gyre model at 

high Reynolds number produces a counter-rotating gyre instead of a Sverdrup bal- 

ance. These counter-rotating gyres are present in the figures of Holland and Lin 

(1975), Kamenkovich et al. (1995), and Sheremet et al. (1995), but are significantly 

weaker than those present here and go uncommented upon in the text of those papers. 
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Greatbatch and Nadiga (1999) and Holm and Nadiga (submitted 2002) were able to 

roughly parameterize thme coimter-rotating regions with various schemes for homog- 

enization of absolute vorticity. However, the most promising underetanding comes 

by comparison with the anal^is of Pedlosky (1965b) of the nonlinear interaction of 

resonant basin mod«. The counter-rotating gyre is nearly inviscid, and the primary 

balance in the vorticity equation is between the eddy advection and the wind forcing. 

If the basin is enlarged to have a region without wind forcing, the counter-rotating 

regions are dynamically similar to those proposed by Pedlosky (1965b) in the wind- 

less region. Thus, it seems that an adaptation of Pedlosky (1965b) might yield a 

good analytic model of the counter-rotating gyre, as it seems that the eddy activity 

causing th^e counter-rotatmg regions is closely related to the resonant basin modes. 

I believe this to be an excellent topic for further inv^tigation. 

The temporal structure of the single-gjre calculations becomes quite comphcated 

as they become tes viscous. At Reynolds numbers near 1, the interactions occur be- 

tween a limited number of periodic motions producing other motions at frequencies 

which are the sums and differences of the original frequencies. At higher Reynolds 

number, the spectrum becomes broad, and the peaks become less pronounced as the 

number of possible interactions increase and secondary and tertiary instability mech- 

anisms without fixed frequency of occurrence appear. In the calculations with a broad 

spectrum, there is more variance in the total kinetic ener^, and it is shared between 

many modes. Even the low frequenci^ which would be associated with chmate vari- 

abihty axe present in the spectra. The quahtative structure of the solution strongly 

affects the variance of the kinetic energy; the more nonhnear, western-intensified so- 

lutions tend to have the largest excursion in kinetic energy relative to the average 

kinetic energy. 

Both the temporal structure and the counter-rotating gyr^ are significantly af- 

fected by the presence of modes of variability similar to the basin modes of oscillation. 

By changing the dimensiom of the basin, it is clear that the frequencies of th^e modes 
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of variability are very close to those of the free, hnear basin modes. The absence of 

basin modes can be achieved by arranging for the basin to be small enough that the 

highest basin mode frequency (corresponding to the gravest mode here) is lower than 

the lowest frequency of the boundary current instabiUties. 

Section 3.6 of this chapter presented the energetics of the single-gyre calcula- 

tions. The energetics of the single-gyre calculation confirm the hypothesis that the 

eddies gradually replace the direct effects of friction as Re(int) increases, so long as 

the frictional sublayer is strong enough. This substitution occurs in the energetics 

as the production of turbulent kinetic energy from the mean flow replaces the direct 

frictional dissipation of the mean flow kinetic energy with increasing Re(int). Interest- 

ingly, while the frictional dissipation is almost always a sink of mean flow energy, the 

turbulent kinetic energy production can be of either sign in different regions (which 

regions are of which sign is Hkely to be dependent on the form chosen for the energy 

production terms). When integrated over the whole basin, however, the turbulent ki- 

netic energy production always transfers energy from the mean flow to the turbulent 

flow. To a lesser degree, the appearance of counter-rotating gyres also reduces the 

energy input because in these regions the ocean does work on the atmosphere. 

Adding bottom friction also changes the character of the solutions. Primarily, if it 

is strong, it makes the solution laminar by damping the eddy activity In particular, 

because it is not scale-selective it greatly reduces the activity of the basin modes 

and often removes the counter-rotating gyres. The bottom friction is active in the 

flux across mean streamhnes throughout the basin and not only within a frictional 

sublayer. Even for small values of 5s, the bottom friction is the primary mode of 

vorticity transport across the mean streamhnes of the recirculation gyre. Its eflicient 

transport of vorticity out of the recirculation gyre can prevent vorticity from being 

trapped there and reduce the strength of the recirculation dramatically. Interestingly, 

the lateral frictional sublayer is able avoid the removal crisis when bottom friction is 

present, a result which will we will return to in section 4.4.4. The removal of vorticity 
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from the basin by bottom Mction at the slip bomidaries is also present, but it is 

usually a small efiFect. 

Slip boundary conditions greatly reduce the production of eddies near the bound- 

ary when compared to no-slip boundary conditions. The reduction smxm due to a 

diminished gradients in the relative vorticity. The reduction even mate it possible 

for an inertiaUy-dominated solution to be steady. In this respect, the sHp boundary 

conditions seem quite unrealistic in the oceanic context where the boundaries are ex- 

pected to generate much variability. Using boundary-enhanced viscosity ameHorates 

this problem somewhat by generating some eddies near the boundary Th^e eddies 

are able to flux vorticity toward the boundary and control the circulation as with 

no-sUp boundary conditions, but they require a much smaUer Re(bdy) to control the 

same Re(int). 

In conclusion, despite the simplicity of the suigl^gyre homogeneous ocean model 

this model become quite complicated and reveaUng as it becomes more inviscid while 

remaining western-intensified. The presence of strong eddies adds quite a lot to the 

dynamics. Of course, although this model is greatly simphfied, as it is based on the 

physics which operate in the real ocean, perhaps some of these phenomena are present 

there. 

161 
m 



J^^ 

162 



Chapter 4 

Adding a Second Gyre 

The results of the preceding chapters demonstrate that eddy transport of vorticity 

plaj^ a controUing role in setting the circulation strength; the eddies transport vor- 

ticity across the streamhnes of the mean flow to a frictional sublayer. Marshall (1984) 

and Harrison and Holland (1981) suggest a different role for eddies in controlling the 

circulation strength: they could flux vorticity to a second gyre, representing the sub- 

polar gyre, and cancel wind's vorticity input internally without requiring frictional 

removal. They assert that an eddy flux of vorticity between the gyr^ reduces the 

strength of the circulation. 

Because this is only one of many theori^ of control of the circulation strength 

which require a second gyre, I have conducted experiments adding a second gyre to 

evaluate th^e theori^. In the introduction, I wiU briefly review the mechanisms that 

have been proposed, then add my own mechanism to the list. The results of the 

numerical calculations with modek with a second gyre will then be presented, and 

then I present a fuU explanation of the mechanisms and evaluation of the mechanisms 

iKing the numerical results. 

The work of Lozier and Riser (1990) (who used sUp boundary conditions) and 

Berloff et al (2002) (who used no-shp boundary conditions) and subsequent work 

using re-entrant channel idealized jets by Pratt et al. (1995) and Rogerson et al. (1999) 
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has shown that most of this eddy transport is not Ukely to be a simple exchange of 

fluid parcels (along with their native vorticity) across the jet dividing the gyres. In all 

of these studies, a vanishingly small mass transport occurs across the jet. Since the 

transfer needs to be irreversible, the eddies cannot later return to their native gyre 

unchanged as they would in a waveUke process. They must be able to significantly mix 

off vorticity before they return. Lagrangian tracers cross the jet semi-permanently 

approximately of 5% of the time, and this percentage appears to be approximately 

correct for oceanographic float observations as well, as shown by Bower and Rossby 

(1989). These results will be reviewed in section 4.4.1. 

Lozier and Riser (1989) and Lozier and Riser (1990) propose a mechanism for 

their model .with sHp boimdary conditions which allows for vorticity transport with- 

out permanent mass transport which they call dissipative meandering. Essentially, 

this involves a parcel crossing the mean inter-gyre boundary temporarily (as with a 

passing Rossby wave), then experiencing significant dissipation, and finally returning 

to its native gyre. By this method, the vorticity is exchanged across the front by 

an eddy flux, u'C'. In the idealization of Lozier and Riser (1989), this mechanism 

occurs without breaking the isoUnes of vorticity; the irreversibility stems from the 

action of dissipation. They assert that it is the motion of vorticity isolines relative 

to streamlines by the action of dissipation which is important. They observe in their 

model that the bulk of the transfer of vorticity occurs in a region very close to the 

western boundary, consistent with the prominent role of dissipation in their model. 

Dissipative meandering will be evaluated in section 4.4.2. 

A different mechanism which requires temporary relocation of the parcels is the 

temporary exposure of a parcel to the opposing wind forcing. In this mechanism, 

as in dissipative meandering, a particle with a particular vorticity crosses the mean 

inter-gyre boundary, its vorticity is changed and then it returns to its native gyre. 

In this mechanism, however, the parcel's vorticity is changed by the opposing wind 

forcing instead of dissipation before it returns to its native gyre.  The exposure to 
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opposing wind forcing will be evaluated in section 4.4.3. 

Of course, instead of an eddy flux of vorticity, a mean flux of vorticity can occur. 

As we will see in section 4.3, this has an important effect in the case of slip boundary 

conditions with the wind forcing gyres of unequal strength. 

I propose a final and new mechanism for control of the circulation strength in 

section 4.4.4: change in the modes of instabihty. This mechanism differs from all of 

the mechanisms above in that it does not require an inter-gyre vorticity flux. Instead, 

it rehes on a chaage in the instabihti^ increasing the efficiency of the flux across mean 

streamlines to the frictional sublayer. In increasing the efficiency, the eddi^ formed 

by the new modes of imtabihty play a role similar to the role of the bottom friction in 

section 3.7. However, the change in the instabUities may also cai^e an inter-gyre flux, 

which occurs with slip boundary conditions. Whether or not there is an inter-gyre 

flux, the new eddi^ can aid in controlhng the circulation strength. This mechanism 

differentiates between the single-gyre model and models with a second gyre, but it is 

present whether or not there fe opposing wind forcing; it relies only on the removal 

of the northern boundary at the Mne of zero wind-stress curl. 

Which mechanism is preferred for the remowl of the wind's vorticity input? Is 

there an inter-gyre flux of vorticity, or is there an eddy flux of vorticity to a frictional 

sublayer? In the preceding chapters, it is demonstrated that the ultimate frictional 

removal of vorticity had a feedback on the eddy fluxes; if there is boundary-enhanced 

vKcosity which mechanism is preferred? What role do the boundary conditions play? 

Obviously, re-evaluating the previous studies by adding a second gyre to the models 

created for the work of the preceding chapters is of interest. 

MarshaU (1984) and Harrison and HoUand (1981) used a double-gyre wind forcing 

which was exactly antisymmetric about the middle of the basin. Thus, this wind 

forcing had no net circulation input to the basin. Because the ultimate removal of 

vorticity from the basin plays a critical role in preceding chapters, an additional model 

is studied here to explore the disposal of vorticity in a multiple gyre model. This new 
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model is similar to the double-gyre but with a weaker subpolar gyre so that the wind 

circulation input is not exactly zero. The three models, single-gyre, two-gyre and 

double-gyre, are presented in section 4.1. 

In section 4.2, calculations with each wind forcing axe compared in models with 

no-slip boundary conditions. The circulation strength is reduced with the addition of 

a second gyre. However, the reduction in circulation is not because of an inter-gyre 

flux of vorticity. 

In section 4.3, calculations with each wind forcing are compared with slip boundary 

conditions. These boundary conditions are closer to those used by Marshall (1984) 

and Harrison and Holland (1981) than no-sUp, and the double-gyre calculations show 

a substantial eddy flux of vorticity from one gyre to the other. As in Lozier and Riser 

(1990), the vorticity exchange occurs in a region very near the boundary. However, 

when the anti-synmietry of the double-gyre wind forcing is not present, the eddies 

are no longer primarily responsible for the flux into regions of opposing wind forcing. 

When the gyres are of unequal strength, the subtropical western boundary current 

overshoots, and it is this mean flow which redistributes the vorticity input by the 

wind forcing. 

To determine the cause of the reduction of circulation strength in sections 4.2 and 

4.3, section 4.4 reviews the hypothetical mechanisms mentioned above in turn. In 

the no-slip case, as there is very little inter-gyre vorticity flux, it must be the new 

modes of instability (particularly instabilities of the jet) that are responsible for the 

change in the circulation strength. The eddies formed by these instabilities are able 

to vastly increase the eflBciency of vorticity transport to the frictional sublayer. With 

shp boundary conditions, the inter-gyre flux is important as in Marshall (1984) and 

Lozier and Riser (1990), but the inter-gyre flux may not be an eddy flux. When 

the wind forcing is exactly antisymmetric, dissipative meandering is quite important 

resulting in an important inter-gyre eddy flux of vorticity When the wind forcing is 

not exactly antisymmetric, the subtropical gyre dominates the weaker subpolar gyre 
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resulting in an important inter-gyre mean fliix of vorticity. 

In the last section, the role of boundary-enhanced viscosity in models with multiple 

gyres is reviewed. It is shown that at sufficient Reynolds number, even in the presence 

of the efficient sinuous modes, a two-gyre solution can become inertially-dominated. 

By using boundary-enhanced viscosity this model can be controUed just as the results 

of Chapter 2 demonstrate for the singl^gyre. Also, it is noted that when boundary- 

enhanced viscosity is used in shp calculations, they have less of an overshoot, a small 

eddy flux to a frictional sublayer, and the direct removal of vorticity by the mean 

flow is larger and the inter-gyre vorticity flux is smaller. 

4.1    The Single-gyre,  Double-gyre and Two-gyre 

Models 

In this chapter, three elates of wind forcing and basin arrangements are used: the 

single-gyre as in the preceding chapters, the antisymmetric double-gyre, and the 

asymmetric two-gyre forcing. 

The single-gyre model is exactly the one used in the preceding chapters. It is a 

square domain with a: and y ranging from zero to one with a dimensionless vorticity 

input from the wind of 

WE*/WE = - siniiry). (4.I) 

In the double-gyre forcing, the subtropical wind forcing extends over the x region 

from 0 to 1 and the y region from 0 to 1 as in the single-gyre. The vorticity input is 

identical to that in the single-gyre over this region. The subpolar gyre of the double- 

gyre model extends over the x region from 0 to 1 and the y region from 1 to 2. The 

subpolar gyre has equal and opposite vorticity forcing as the subtropical gyre. The 

wind forcing in the double-gyre model is the same as that used in Marshall (1984) 

(other than in nomenclature). 
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Note that the vorticity input is exactly antisymmetric about the y=l Hne in the 

double-gyre model. I will return to discuss this symmetry many times, because the 

solutions of the double-gyre are strongly affected by it. 

The third model is a two-gyre model, which also has subtropical and sub-polar 

gyres but they are not exactly antisynunetric. Instead, as in the real ocean, the 

sub-polar gyre is smaller than the subtropical and its wind forcing is weaker. The 

forcing in this model was made to resemble the zonally-averaged circulation input 

found for a reahstic model of the North Pacific (Huang and Chao (Submitted 2001)). 

A polynomial expansion of the forcing was chosen so that there would be no rough 

transitions in forcing or its derivatives. The amplitude of this polynomial was then 

normahzed so that the circulation input to the subtropical gyre was the same as in 

the other two models, and the northward extent of the basin was chosen so that the 

zero wind-stress curl hne hes at y = 1 as in the other models. This analysis resulted 

in the following quintic polynomial approximation for the wind stress: 

10   _ J9_   I   J2  TT  r       L    i   JO- _ _59_ + ii _ _4_ 5-- 4.2) 

The basin dimension in the zonal direction was chosen to be the dimensional unit, 

so the zonal spread remains 0 to 1. The meridional basin dimension of the two- 

gyre case, dubbed Ly, was chosen so that the zero wind forcing line matched that 

of the double-gyre and single-gyre calculations. This choice resulted in the northern 

boundary being located at Ly = (11 + \/2l)/10 which is approximately 1.56. 

Thus, in all three models, the subtropical wind forcing extends over the x region 

from 0 to 1 and the y region from 0 to 1 as in the single-gyre. The subtropical gyre 

was kept constant in terms of total vorticity input and northward extent of negative 

wind forcing so that direct numerical comparisons could be made between the models. 

The vorticity input of the wind in the three models is shown in figure 4-1. 
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Figure 4-1: Comparison of the vorticity input by the wind in the three models. 
Double-gyre forcing is shown as a sohd hne, two-gyre forcing is shown as a dashed 
hne, and single-gyre forcing is shown as a slashed and dotted line (which overlays the 
double-gyre forcing). 

4.2    Results with No-Slip Boundary Conditions 

In this section, the results of the single-gyre calculation with no-shp boundary con- 

ditions on the eastern and w^tem boundaries are compared to the two-gyre and 

double-gyre calculation with the same boundary conditions. 

The results from a single, double, and two-gyre calculation, each with Re(bdy)=5, 

Re(int)=5, are shown in figure 4-2. Obviously, the chculation is much stronger m the 

single-gyre calculation. The two-gyre and double-gyre calculation have much weaker 

circulations. They have similar magnitudes to each other in the subtropical gyre. 

Importantly, the recirculation gyre is almost completely missing in the double and 

two-gyre calculations, and what is remaining of it is stretched along the meridional 

direction. 

The eddy flux of vorticity across the streamUne dividing the gyres is ako given 

in figure 4-2. In both the double-gyre and the two-gyre cas^, it is extremely small, 

much smaller than the flux mto the counter-rotating region, for example. Given the 

inaccuracies due to numerical error and errors in averaging, this flux is too small to be 
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Figure 4-2: Contours of the time-mean streamfunction for different basins and wind 
forcing with Re(bdy)=5, Re(int)=5, and no-shp boundary conditions. The contour 
interval is 0.2, regions of negative streamfunction are shaded. The arrows on the figure 
give the eddy fiux of vorticity across that zero contour of psi. (The total vorticity 
input from the wind to the subtropical gyre is 0.637.) The contour interval is 0.2. 

distinguishable from zero. In fact, the direction of the vorticity exchange is diiferent 

in the double-gyre and the two-gyre models. 

. Figure 4-4 shows the single, double, and two-gyre calculations with boundary- 

enhanced viscosity. The results are surprisingly similar to those in figure 4-2 for the 

double and two-gyre calculations. This is because in figure 4-2 and figure 4-4, the 

calculations have a nearly Sverdrup interior (See figure 4-3). Thus, although the 

boundary-enhanced viscosity changes the boundary current and recirculation some- 

what, because the interior is nearly Sverdrup, there are few differences between the 

two-gyre and double-gyre calculations with and without boundary-enhanced viscosity. 

The inter-gyre vorticity fluxes remain very small in the boundary-enhanced viscosity 
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Figure 4-3: Comparison of the time-mean streamfunction at y=0.6. The follow- 
ing calculations are shown: no-slip, Re(bdy)=Re(int)=5 single-gyre (solid), two- 
gyre (dot-dot-dashed), and double-gyre (dot-dashed); and no-slip, Re(bdy)=0.25, 
Re(int)=5 single-gyre (dotted), two-gyre (crosses), and double-gyre (long-dashed). 
Note how only the Re(bdy)=Re(int)=5 single-gyre (solid) calculation, which k 
inertially-dominated diverge significantly from the Sverdrup solution (dashed) in 
the interior. Within the recirculation {x «0.1 to 0.3), small differences between the 
other solutions are apparent. 

calculations. I will return to discuss the necessity and results of using boundary- 

enhanced viscosity at higher interior Reynolds number in section 4.5. 

So, at the same Reynolds number the two and double-gyre circulations with no-slip 

boundary conditions have nearly the same circulation strength as the linear Munk so- 

lution, although the single-gyre calculations are significantly stronger than the Munk 

solution. This occure without a substantial inter-gyre eddy flirx of vorticity. 

4.2.1    Erictional and Eddy Fluxes 

It has been proposed by Marshall (1984) and Harrison and Holland (1981) that in 

time-dependent, high Reynolds number calculations of the barotropic double-gyre 

circulation, an eddy flxix of vorticity exchanges vorticity from gyre to ^re.  If this 
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Figure 4-4: As in figure 4-2, except for the Re(bdy)=0.25, Re(int)=5, no-slip calcu- 
lations. 

occurs, since the sense of rotation of the two gyres is opposite, the circulation could 

be controlled, or at least the work needed to be performed by frictional removal is 

decreased. 

To show the inter-gyre eddy fluxes, Marshall (1984) removed one part of the rota- 

tional fluxes to demonstrate that the remaining, primarily divergent, flux was across 

the inter-gyre boundary. The separation used depended critically on there being a 

functional relationship between ^ and C- Marshall (1984) chooses super-slip boundary 

conditions (^ = 0) with the goal of producing a functional relationship between ^ 

and C- He argues that using no-slip or slip boundary conditions unrealistically reduce 

the advection of vorticity along the boundary. Using super-slip boundary conditions, 

he is able to show that there is an approximate functional relationship between Ip 

and C, at least in a Umited region of the basin.  Here, as in Roberts and Marshall 
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(2000), we are i^ing no-slip boundary conditions aad there is no single-valued func- 

tional relationship between ^ and C- No functional relationship exists when using 

sMp boundary conditions either. Alternate methock for separating the fluxes into di- 

vergent and rotational parts are not unique and therefore inadequate to demonstrate 

inter-gyre fluxes, as pointed out in Fox-Kemper et al. (2003). 

Therefore, the inter-gyre fluxes are analyzed here as budgets from one region to 

another. When the divergence of the flux is integrated over a closed region, the 

flux out of that region is obtained. This r^ult was presented in a simpler context 

in equation 2.15 and 2.16. Here, as in the preceding chapters, we wiU use mean 

streamUnes as the boundari^ of the regions of mtegration. By choosing these regions, 

only the frictional flux^ and eddy fluxes are present because the mean flux and the 

/?-flux cancel, as shown in equation 2.15. 

The inter-gyre flux of vorticity in the no-shp calculations performed here seen^ 

to be neghgible. In fax:t, it is typicaUy the smaUest m the two-gyre and double-gyre 

calculations when compared to aU of the other fluxes, eddy and frictional. In figures 4- 

2 and 4-4, nc^sHp calculations m different basins are compared side-by-side. In all of 

these calculations, the inter-gyre flux of vorticity never exceeds 0.2% of the vorticity 

input to the subtropical gyre (the total mput is approximately 0.637). In fact, even 

the sign of the eddy flux appears to be random or at least indeterminate. In any 

case, it is highly improbable that such a small flux controk the circulation strength, 

when a tiny percentage change in the frictional removal would produce a much larger 
effect. 

The result is changed Httle when an enhanced frictional sublayer is used as in 

figure 4-4. The preceding chapters demonstrate that in smgle-gyre calculations the 

boundary-enhanced viscc^ty is needed to control the circulation, as the friction near 

the boundary ultimately removes the vorticity. In the multiple-gyre calculations, 

there is obvioMy a mechanism at work which reduce the circulation, yet it does not 

require the boundary-enhanced viscosity at this Re(int), nor is the inter-gyre eddy 
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flux responsible. 

In the discussion of section 3.7,1 argued that the removal crisis was averted when 

bottom friction was present because the bottom friction prevented a response to the 

increased vorticity gradient near the boundary. The results in figures 4-2 and 4-4 

seem to indicate that something introduced with the second gyre may also prevent 

the removal crisis response. 

In figures 4-5 and 4-6, the eddy fluxes of vorticity are compared with the fric- 

tional fluxes of vorticity across a few important streamHnes. In agreement with the 

assertions of the previous chapters, there is a large divergence in the flux between 

the ■^ = 0 and tjj « 0.25 mean streamHnes. This is indicated in figures 4-5 and 4-6 

by a large difference in the eddy flux across the ^ = 0 streamUne demarcating the 

counter-rotating gyre and the V' = 0.25 streamhne. This vorticity dropped off by this 

eddy flux divergence is picked up by a large frictional flux convergence and trans- 

ported through the basin boundary. The magnitude of the frictional fluxes across 

the interior mean streamHnes decreases rapidly from the flux through the boundary, 

indicating a frictional flux convergence contained in a region close to the boundary. 

Thus, the mechanism of the preceding chapters is represented here. The transfer 

between frictional dissipation and eddy fluxes is revealed in these flgures as an increase 

in the eddy flux magnitude and a decrease in the frictional flux magnitude as one 

considers streamlines farther from the boundary. For example, in figure 4-6, where the 

eddy flux across the V' = 0.1 streamline is only 0.067 and the flux across the ^ = 0.25 

streamline is 0.218. A corresponding decrease in the frictional flux magnitude confirms 

that the vorticity is transferred from the frictional fluxes to the eddy fluxes in this 

region near the boundary. 

For almost all of the interior streamUnes the frictional fluxes are much smaller 

than the eddy fluxes. The notable exception is the ^ = 0.1 mean streamline, which is 

included because it indicates that the flux across streamlines which enter the frictional 

sublayer is largely frictional. 
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Eddy I-luxes Frictional Fluxes 

Figure 4-5: ' B^t estimates of (a) time-mean eddy iuxes of vortic- 
ity acr«s chosen mean streamlines (those shown with thick lin« ^ = 
{-0.75,-0.25,-0.1,0,0.1,0.25,0.75}) and (b) time-mean frictional fluxes of 
vorticity across the same streamUn^. The frictional fluxes through the boundary 
may not represent a simply connected region where counter-rotating gyres are present 
(e.g., it may include flux through eastern, northern, and western boundaries added 
together). The regions are divided by the intersection of the streamline where i? = 0 
and the boundary. The calculation shown is the no-slip, single-gyre, Re(bdy)=5, 
Re(int)=5 calculation. 

In interpreting the results of figures like figure 4-5, it is important to remember 

that some of the convergence present in the frictional and eddy fluxes is i^ed in 

canceling the wind input. For example, the difference between the 0.118 flux across 

the ^ = 0.25 streamline and the and 0.107 flux across the ^ = 0.75 streamline is most 

hkely being used to cancel the wind input between those streamline. Obviously, the 

0.107 flux into the closed region of the recirculation gyre is entirely canceled by the 

wind forcing there. 

In agreement with the results of the previous chapters, the coimter-rotating gyres 

in figures 4-5 and 4-6 are primarily eddy-driven and relatively inviscid. This is shown 

in these figures by the significantly larger eddy fluxes across their bounding streamline 

than the frictional fluxes into the counter-rotating region. 
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Eddy Fluxes Frictional Fluxes 

Figure 4-6: Time-mean eddy fluxes and frictional fluxes as in figure 4-5 except the 
calculation shown is the no-slip, single-gyre, Re(bdy)=0.25, Re(int)=5 calculation. 
Note that only selected streamlines are displayed. 

Figure 4-7 shows the eddy and frictional fluxes across mean streamlines in no-slip, 

two-gyre calculations with constant viscosity. In this calculations, we see essentially 

the same mechanism of vorticity removal as in the single-gyre calculations. There is 

a large eddy flux divergence between the first few interior streamlines in the subtrop- 

ical gyre. This vorticity is removed by frictional fluxes through the boundary. The 

increase in eddy flux between the ^ = 0.1 streamline and the Tp = 0.25 along with a 

corresponding decrease in frictional fluxes indicates the presence of the boundary-layer 

processes described in the preceding chapters. However, note by comparing figure 4-2 

and 4-4 that the boundary-enhanced viscosity does not have nearly as much of an 

effect on the two-gyre calculations as it does in the single-gyre calculations. 

Figure 4-8 shows the eddy and frictional fluxes across mean streamlines in two- 

gyre calculations with constant viscosity. Just as in the single-gyre and two-gjrre 

calculations, eddy fluxes to a frictional sublayer are responsible for the bulk of the 

vorticity removal from the basin. 

Why there is such a striking difference between figure 4-5 and figures 4-7 and 
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Eddy Fluxes Frictional Fluxes 

Figure 4-7: Time-mean eddy flux^ and frictional fluxes as in figure 4-5 except the 
calculation shown is the no-slip, two-gyre, Re(bdy)=5, Re(int)=5 calculation. Note 
that only selected streamlines are displayed. 

4-8? The preceding chapters show that a boundary-enhanced viscosity is required to 

make the frictional sublayer capable of smoothly removing the vorticity input from 

the basin. Here, even though the viscosity is constant through the basin, the eddy 

flux of vorticity to the frictional sublayer is capable of controlhng the circulation. 

Apparently, something has changed either in the nature of the frictional sublayer, the 

mean flow, or the eddy fluxes to the frictional sublayer which allows vorticity to be 

removed from the basin without a removal crisis and inertial-domination. It is not 

an eddy flux of vorticity between the gyres that controls the circulation in the no-slip 

calculations. 
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a.    Eddy Fluxes 
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0 007 

b.    Frictional  Fluxes 

Figure 4-8: Time-mean eddy fluxes and frictional fluxes as in figure 4-5 except the cal- 
culation shown is the no-slip, double-gyre, Re(bdy)=5, Re(int)=5 calculation. Note 
that only selected streamlines are displayed. 
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Errors in Flux Estimates 

The fluxes shown in the figures 4-5 and 4-6 and similar figures appearing later are 

described in the caption as 'best estimates' ba;ause there is more than one approach 

used in their calculation. Wherever possible, and always in the case of eddy fluxes, the 

flux divergence is integrated over the region enclosed by the streamline to determine 

the cross-streamline flux. This mmimiz^ the effect of errors in the eddy flux. For the 

frictional flux, the errors result from calculating many derivatives of the mean flow, 

experience has shown that integrating the flux divergence over a large area is useful 

in evaluating those tern:^ as well. 

Because the frictional fluxes do not vanish at the boundari^ other approaches 

are necessary in conjunction with integration of the divergence. Wherever possible, 

larger areas connected to the boundary are used as areas of integration for the fric- 

tional flux divergences. This allows the construction of budgets which constrain the 

frictional flux estimate. In some regions, it remains necesary to directly evaluate 

the spatial distribution of S%VC to ctee the budgets. For example, the inter-gyre 

frictional flux is etimated as the average of S%^ over a smaU region enclosing the 

inter-gyre boundary. The result is observed to be relatively insensitive to the location 

of the inter-gyre boundary and the region of averaging. The S^g component is smaU 

and nearly perpendicular to the mter-gyre boundary m this region which also aids 

the estimation. Dividing the flux out of the counter-rotating gyres into a component 

through the boundary and another into the interior is also necessarfly estimated by 

examining the spatial distribution of S%[VC. 

The flux determination method is comphcated enough to pr^ent substantial dif- 

ficulties in propagating the error estimate through the calculation. Ako, errors are 

surely preent that are related to whether the model was run sufficiently long enough 

to get an accurate average. It is easy to find an accurate average for the streamfunc- 

tion, but for the relative vorticity, eddy fluxes, and friction fluxes it is quite difficult. 

I have determined that the errors made in determining the fluxe by the 'best 
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estimate' method axe not significant when compared to errors in the averaging. Their 

size can be estimated jfrom the variabiUty in figiures similar to figure 2-9. 

The magnitude of the averaging errors is estimated by calculating the averages 

over only part of the time interval used in generating the figures hke figure 4-5. An 

example calculation averaging over a reduced time interval corresponding to figure 4-8 

is shown in 4-9. It is clear from figure 4-9 that most of the fluxes are statisticaUy 

stable, especially those of large ampUtude or those which result from integration over 

a large region. The smaller fluxes are known to within an order of magnitude at least, 

with the exception of the frictional inter-gyre flux which is very small. 

It is difficult to directly estimate the errors in the flux estimates, and so the the 

fluxes have been given no expUcit errors. Instead the error estimates have been used 

to choose of the number of digits shown. Although the protocol for significant digits is 

not used strictly as budgeting is necessary in the error estimation process, the number 

of digits given for each flux should be the correct number, or occasionally one more 

digit is present. 

In summary the vorticity flux estimates for no-shp calculations presented here 

differ dramatically from previous attempts to diagnose the inter-gyre vorticity flux, 

all of which use different boimdary conditions. There is only a vanishingly small 

inter-gyre flux of vorticity although the eddy fluxes are large and play an important 

role in transporting vorticity to the frictional sublayer. As in preceding chapters, 

the boundary current in the exit region is of the type described in section 3.1, and 

throughout the interior the flux across mean streamlines is dominated by the eddy 

fluxes. Despite the lack of an inter-gyre flux of vorticity the circulation strength of 

the subtropical gyre is significantly reduced when a second gyre is added, and at the 

same time, sensitivity to enhancing the boundary viscosity is reduced. 
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Figure 4-9: Estimate of (a) eddy fluxes of vorticity across chosen mean streamlines, 
and (b) firictional fluxes of vorticity across the same streamlines. This flgure is to be 
compared to flgure 4-8 to estimate magnitude of errors, as in the calculation shown 
here the time average is taken only over the second half of the interval used in the 
average for figure 4-8. 
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4.3    Results with Slip Boundary Conditions 

Marshall (1984) uses bottom friction and hyper-viscosity (VC in the vorticity equa- 

tion) with frictional boundary conditions £ = 0 and ^C = 0. He finds that in 

his calculation of the double-gyre, 0.563 out of an integrated vorticity input of 0.648 

to the subtropical gyre is canceled by eddy fluxes across the inter-gyre boundary. 

Harrison and HoUand (1981) find a similar result for a two-layer quasigeostrophic 

calculation with hyper-viscosity and C = 0 and V^C = 0 boundary conditions. Lozier 

and Riser (1989) also find a large canceUation with lateral friction (V\) and sUp 

boundary conditions in a thre^layer calculation. Lozier and Riser (1990) are careful 

to point out that using simulated Lagrangian floats they determine that this eddy 

flux is not related to a long-term exchange of mass in the directly wind-driven layer. 

In an effort to understand the contradiction in the results of the previous section and 

these results, I conducted calculations of the double-gyre and the two-gyre basins 

with shp boundary conditions. 

Recall that in the case of the single-gyre with slip boundary conditions (sec- 

tion 3.8), the eddy fluxes were significantly smaller or nonexistent when compared 

to the no-slip calculations. Apparently, it is very difficult to generate eddies at the 

boundary when sUp boundary conditions are used because the vorticity gradients are 

too weak for instabilities to form. Only by using boundary-enhanced viscosity were 

the gradients made large enough to produce instabihty in the single-gyre, slip calcu- 

lations. The single-gyre calculation without boundary-enhanced viscosity was steady, 

and its lack of eddies lead it to be hundreds of times stronger than the calculation 

with boundary-enhanced viscosity. 

Unlike the double-gyre with no-shp boundary conditions, in the double-gyre with 

constant viscosity and slip boundary conditions the inter-gyre eddy fluxes are primar- 

ily responsible for removing the vorticity. In a calculation with Re(bdy)= Re(int)=2.5, 

the eddies dispose of 0.33 out of 0.64 of the wind's vorticity input to each gyre. In 

a calculation with Re(bdy)= Re(int)=5, the eddies dispose of 0.56 out of 0.64 of the 
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Figure 4-10: As in figure 4-5 except the calculation shown is the slip, double-gyre, 
Ite(bdy)=2.5, R«(int)=2.5 calculation. Note that only selected streamline are dis^ 
played. 

wind's vorticity input to each gyre. The remaining portion was removed by friction. 

These results are shown in figure 4-10 and 4-11. 

In figure 4-10 and 4-11, the eddy fluxes across the streamlines shown do not 

increase significantly or they decrease with distance from the boundary. As an increase 

is the clear indicator of the eddy flux to the frictional sublayer, the mechanism of the 
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Figure 4-11: As in figure 4-5 except the calculation shown is the slip, double-gyre, 
Re(bdy)=5, Re(int)=5 calculation. Note that only selected streamhnes are displayed. 
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preceding chapters appeare not to be particularly effective in these calculations. The 

eddy fluxes and friction fluxes seem to work independently to balance the wind input. 

The frictional flux removes the vorticity input directly from the mean streamlines that 

pass close enough to the boundary, and the eddy flux transports vorticity from gyre 

to gyre, cancehng wind input in both regions. 

When boundary-enhanced viscosity is used in a doubl^gyre, shp calculation (fig- 

ure 4-12), the eddy fluxes perform both an inter-gyre flux (of 0.167 units) and a flux 

from the frictional sublayer (of approximately 0.02 units). In this case the direct 

action of friction on the mean flow entering the frictional sublayer is the most impor- 

tant contributor to the removal of vorticity. For the streamMnes which do not pass 

through the frictional region, the eddy flux emanates from within these streamHnes 

and go^ primarily into the other gyre where it is removed primarily by dissipative 

meandering. Apparently, because the viscosity near the boundary is larger here than 

in the calculation shown in figure 4-11, more of the vorticity input is removed directly 

by friction in figure 4-12 than in figure 4-11 where most of the vorticity is removed 

by dissipative meandering. 

The frictional dominance of figure 4-12 is consistent with the discussion of sec- 

tion 3.8, where it is pointed out that slip boundary conditions do not easily produce 

eddies near the boundary. The frictional flux^ also dominate the single-gyre, sHp 

calculation with boundary-enhanced viscosity (as m figure 3-27a). Thus, the eddy 

flux of vorticity to the frictional sublayer is not particularly effective with slip condi- 

tions, although it is somewhat more effective with boundary-enhanced viscosity than 

with constant viscosity. 

However, where eddies are completely absent (as in flgure 3-27b) the circulation 

must gain enormous strength to remove the vorticity from the innermost streamdin^ 

frictionally with low viscosity So, although there are few eddies in the slip calculations 

of figure 3-27a, they serve an important role in removing vorticity from the innermost 

streamlines.  In the single-gyre case, the eddi^ flux this vorticity to the frictional 
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Figure 4-12: As in figure 4-5 except the calculation shown is the slip, double-gyre, 
Re(bdy)=0.25, Re(int)=5 calculation. Note that only selected streamlines are dis- 
played. 
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sublayer. In the double-gyre case, the eddi« flux this vorticity primarily to the other 

gyre, and to a l^ser extent to the Motional sublayer. 

A weakness of using a barotropic model for th^e calculation is the lack of eddy 

generation at a sUppery boundary. As the only mechanism for instabihty is shear 

instability or Motional instabihties, and as the shp boundary condition produces very 

little shear in the boundary layer, there are no eddi^ formed in the interaction with 

the boundary. However, it is highly unHkely that this would be true of a real oceanic 

boundary. The generation of eddies by rough topography is weU-known, and more 

esoteric interactions with a sloping boundary also produce significant eddy activity 

(HaUberg and Khines (2000) and Becker and Sahnon (1997)). Thus, it seems that 

the use of a slip boundary condition in a barotropic model fe likely to produce too 

few eddies at the boundaiy. The r^ults with shp boundary conditions are therefore 

biased against the interaction of the boundary with the eddy field. 

As there are few eddies produced at the boundary, the remaining region for for- 

mation of eddies, the jet, dominates the production of eddies in the double-gyre, shp 

calculation. Th^e eddies produce a large inter-gyre flux of vorticity. Note, however, 

that the doubl^gyre is singularly suited to favor inter-gyre eddy fluxes of vorticity 

rather than other adjustments to control the curculation strength. Given the exact 

antisymmetry of the wind forcing, over a sufficiently long integration and with suf- 

ficiently energetic eddies, it is implausible that the inter-gyre boundary wiU not he 

precisely halfway along the north-south dimension of the basin. Even if the solution 

were to oscillate between two different, but antisymmetric, quasi-stable solutions, the 

resulting analysis of the eddy fluxes would diagnose the transitions as mter-gyre eddy 

fluxes. 

When the exact forcing antisymmetry is broken in the two-gyre, slip calculation 

a very different result aris^. In this case, the stronger, subtropical gyre's western 

boundary current overshoots the zero wuad stress curl hue and completely dominates 

the subpolar gyre's boundary current (see figure 4-13). When compared to the double- 
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Figure 4-13: As in figure 4-5 except the calculation shown is the slip, two-gyre, 
Re(bdy)=2.5, Re(int)=2.5 calculation. Note that only selected streamlines are dis- 
played. 

gyre calculation in figure 4-10, the inter-gyre eddy flux is greatly reduced and the eddy 

flux to the frictional sublayer is increased. 

In the double-gyre calculation of figure ^10, the boundary current from one gyre 

was forced toward the interior at the center of the western boundary by the opposing 

boundary current. Because these two currents were equally matched, neither could 

dominate (at least not for an extended period). In the two-gyre calculation, the 

currents are not evenly matched. 

Cessi (1991) finds that the stronger jet overshoots with slip boundary conditions, 

and the stronger jet undershoots (separates just before the Hnear meeting point) with 
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no-slip boundary conditioiK. Her model la^ the same dynamical equations as those 

used here, but the boundary currents' mass transport is from source on the w^tem 

boundary to the north and south of the separation to a sink on the eastern boimdary 

Thia, the fesue of the vorticity transport of the boundary current's overahoot (or 

lack thereof) is not important as it is here. However, the mechanisnB d^cribed by 

C^si (1991) are appHcable here, and the overshoot in the slip case is clearly visible 

in figure 4-13 while a small imdershoot occurs in figure 4-7. 

In figure 4-13, we see that the inter-gyre eddy flux is smaller (0.128) and the flux 

to the frictional boundary layer is larger (approximately 0.07) than in figme 4-10. 

However, we see already that the combined effect of friction (0.500) and inter-gyre 

eddy flux (0.128) is less than the 0.637 input. The deficit is made up by a mean flux 

of vorticity in the ectended w^tern boundary current of 0.01 units.^ The northward- 

flowing water and southward flowing water have different vorticity because the water 

experience the opposing wind forcing after it crepes the zero wind stress curl line.^. 

The mean flow removing 0.01 units is not much when compared to the 0.64 units 

of the wind forcing. However, the dominance of the subtropical current becomes even 

more pronounced for higher Reynolds number calculations. In flgure 4-14, the inter- 

gyre eddy flux is only 0.10, so that the meaa flow now cancels 0.038. In figure 4-15 the 

boundary current of the subtropical gyre continues northward to form a recfrculation 

gyre which nearly replaces the subpolar gyre. In this case, the inter-gyre eddy flux 

cancels only 0.038, so the mean flow cancels 0.10. 

In figure 4-15, the importance of the mean flows across y = 1 is greater than in 

figure 4-13. The mean flow of both the subtropical and subpolar gyres carries the 

water across the zero wind-stres curl Une so that the mean flow experiences both 

wind streses in turn. The exposure to subtropical wind stress that the subpolar 

gyre experiences by extending below y = 1 reduces its vorticity input by 0.01. The 

^Thk value is small, but statistically significant. 
^The extension of the w^tem boundary current also increases the length of the frictional bound- 

ary layer, but this effect is included in the 0.500 frictional vorticity flux 
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Figure 4-14: As in figure 4-5 except the calculation shown is the sUp, two-gyre, 
Re(bdy)=5, Re(int)=5 calculation. Note that only selected streamlines are displayed. 

exposure to subpolar wind stress that the subtropical gyre experiences by extending 

above y=l reduces its vorticity input by 0.09. Therefore, instead of the wind input 

of -0.637 that the subtropical gyre would ordinarily experience, it receives only -0.521 

(not considering the counter-rotating region). Likewise the subpolar gyre experiences 

0.054 instead of 0.157. The effect of the mean flow on the subtropical vorticity input 

is more than double the 0.05 that is canceled by an internal eddy flux of vorticity.^ 

Although, for what remains of the subpolar gyre, the inter-gyre eddy flux remains 

a critical outlet. The eddy flux to the extended boundary current to its west removes 

Because of the high Reynolds number used here, the eddy fluxes are not as accurate as in the 
other figures, so the number of digits is reduced accordingly. 
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Figure 4-15: As in figure 4-5 except the calculation shown is the slip, two-^re, 
Re(bdy)=10, Re(int)=10 calculation. Note that only selected streamKnes are dis^ 
played. 

nearly all of its vorticity input to the remaining subpolar gyre. This is evidently 

required, as the subpolar gyre no longer reaches the western boundary for significant 

dissipation to occur. 

Thus, although the mean flux of vorticity only represents a cancellation of ap- 

proximately 0.01 of the 0.637 total vorticity input in figure 4-13, this appears to be 

the preferred method of adjustment in an asymmetric multiple-gyre solution with 

sHp boundary conditions as the Reynolds number increase. Rather than an increase 

in the inter-gyre eddy flux of vorticity, the subtropical western boundary current in- 

trudes farther and farther into the subpolar gyre. Ultimately, it seems there will be 
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only one gyre, which has a recirculation gyre completely filling the region of subpolar 

wind forcing. In figure 4-15, the inter-gyre eddy flux cancels only a small part of the 

vorticity input to the subtropical gyre. 

A much less dramatic version of this result was seen in Verron and Le Provost 

(1991). The calculations by Verron and Le Provost (1991) are much more viscous than 

those here, but they are multi-layered. Thus, it seems that the subtropical domination 

may also occur at higher Reynolds number even in multi-layered calculations. 

Another advantage of extending the western boundary current instead of an inter- 

gyre eddy flux is that the boundary current is now much longer. So, instead of 

removing 0.157 through the boundary between ^ = 1 and j/ « 1.56 and -0.637 from 

the y = 0 to t/ = 1 region, it now has to remove only 0.478 and has a longer time to 

do it (as the current now runs from firom j/ = 0 to y RJ 1.56 and along the northern 

and eastern boundary as well). 

In addition to the mean flow transporting vorticity across the zero wind stress curl 

fine, the mechanism of the preceding chapters is moderately present in the subtropical 

gyre in figure 4-14 and strongly present in the subtropical gyre in figure 4-15. There is 

a large eddy flux divergence between the ^ = 0 and 7p = 0.25 mean streamlines. This 

eddy flux divergence is balanced primarily by the frictional flux convergence near the 

western boundary. 

Figure 4-16 demonstrates that effect of the subpolar wind forcing is not negligible 

in the two-gyre slip calculations. In figure 4-16b, the subpolar wind forcing is set 

to zero, and the circulation strength is significantly stronger there than in figure 4- 

16a. The maximum of the streamfunction in the subpolar region in figure 4-16b is 

approximately 1.98 while it is 0.66 in figure 4-16a. The difference between these two 

(1.32) is nearly three times the maximum magnitude of the Unear Munk solution 

for the subpolar gyre wind forcing (-0.48). Thus, although the overshoot occurs 

whether there is subpolar wind forcing or not, the subpolar circulation strength is 

quite different in the two cases, and the difference is greater than would be expected 
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Figure 4-16: Comparison of two-gyre slip calculations with constant viscosity 
(Re(bdy) = Re(int) = 5) with different subpolar wind forcinp. (a) uses the standard 
two-gyre wind forcing, and (b) has wind forcing set to zero in the subpolar gyre. 

by considering a linear Sverdrup solution perturbation. 

The subtropical gyre, however, is quite similar in Bgures 4-16a and 4-16b. In 

both cases, it is nearly in Sverdrup balance; the import of subpolar vorticity into the 

subtropical gyre does not appear to be a major factor in determining the subtropical 

circulation strength. Thus, the subpolar wind forcing does affect the streiigth of the 

subpolar gyre, but it does not affect the strength of the subtropical gyre. 

The export of subtropical vorticity to the region of subpolar wind forcing is im- 

portant for keeping the subtropical gyre nearly in Sverdrup balance. The exported 

subtropical vorticity is removed primarily by the elongated western boundary current, 
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Calculation from figure: 4-13 4-14 4-15 4-16 
Re(bdy)=Re(int)= 2.5 5 10 5 (no subpolar wind) 
Wind input y <1 -0.63 -0.62 -0.61 -0.63 

Friction y <l 0.35 0.26 0.19 0.26 
Eddy Flux y<l 0.03 0.08 0.06 0.03 
Wind input y > 1 0.01 0.05 0.09 0 

Friction y>l 0.15 0.23 0.30 0.36 
Eddy Flux y > 1 0.09 0.00 -0.03 -0.04 
Mean Flux from 
y<ltoy>l 

-0.25 -0.28 -0.36 -0.33 

Table 4.1: Regions and mechanisms_of vorticity input and removal for the subtropical 
gyre and its overshoot (i.e., where V > 0) for the sUp, two-gyre calculations. Fluxes 
are calculated by integration of flux divergence over region where ^ > 0 and j/ < 1 or 
^ > 0 and y > 1. 

but the subpolar wind forcing also plays an important role. The sources and sinks 

of vorticity for the region rotating in the anticyclonic direction (i.e., where ^ > 0) 

are given in table 4.1. As the Reynolds number increases the removal of exported 

vorticity by friction decreases while the effect of subpolar wind forcing increases. 

However, because the inner streamUnes do not enter the frictional sublayer and 

the slip boundary conditions are not conducive to a flux to the frictional sublayer, 

the subpolar wind forcing is important in removing the vorticity from the innermost 

streamlines as demonstrated by figure ^16. Table 4.1 indicates that the calculation 

without subpolar wind forcing has a larger mean inter-gyre flux than the case with 

subpolar wind forcing at the same Reynolds number.^ In the case with subpolar wind 

forcing, the innermost streamfines have wind forcing to cancel the incoming subtrop- 

ical vorticity In the case without subpolar wind forcing, the innermost streamlines 

trap vorticity so the circulation strengthens until dissipation is able to reach these 

innermost streamUnes. 

The dissipative meandering of the double-gyre, slip calculations can be considered 

■"This highlights the importance of a regional study with a model such as the one used by Cessi 
(1991). The global vorticity budget will depend on the local dynamics which determine the strength 
of the overshoot. 
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as a special case of the stronger gyre overshooting into the weaker gyre as in the 

two-gyre calculations. Apparently, whichever of the two gyr^ in the double-gyre 

calculation is stronger overshoots into the other one. The r^ulting elongation of the 

boundary current aJlows for increased dissipation (and to a lesser extent exposure 

to opposing wind forcing), just as in the two-gyre calculations. The difference is 

that in the doubl^gyre, once the overshoot has occurred for a wMle, the stronger 

gyre weakens because its boundary current is longer. Likewise, the weaker gyre 

becomes stronger because its boundary current is shorter. Soon, the weaker gyre has 

become the stronger and the direction of the overshoot reveres. Time-averaging over 

the alternating overshoots giv^ a rectified inter-gyre eddy flux, and this is precisely 

the mechanism of dissipative meandering. No equilibria with the overshoot in one 

direction or the other were found in the double-gyre, but it is possible that they exist 

but require a different initial condition to be readied. 

Figure 4-17 shows the difference in the frictional flux through the boundary for the 

two-gyre slip and no-shp calculations. Note that the no-sHp calculation has vorticity 

smoothly injected through the w^em boundary, so that the vorticity is removed at 

at ahnost the same latitude where the wind inputs it. In that case, the frictional 

removal is quite similar to the Mneax Munk solution's frictional removal. However, we 

know that unhke the Unear solution, the flux across the interior streamHn^ is carried 

by an eddy flux, not a frictional flux. 

The two-gyre shp calculation, on the other hand, has a positive vorticity flux aU 

along the w^tem boundary. Thus, the frictional flux is canceHng primarily the sub- 

tropical wind input, and the subpolar input is canceled internally by the eddy fluxes 

and the mean flux^ across the zero wind str^ curl line. Note that the magnitude 

of the fluxes through the western boundary is much smaUer in the shp calculation 

than in the no-shp calculation. This is a sign that 1) because the boundary current 

is elongated, less vorticity per unit length is required to balance the wind input, and 

2) the vorticity gradients are weaker at the boundary in the sUp calculation than in 
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Figure 4-17: Maps of the normal frictional fiiix through each of the boundaries for 
the no-slip Re(bdy)=5, Re(int)=5 two-gyre calculation (on left) and the Re(bdy)=5, 
Re(int)=5 two-gyre shp calculation (on right). The four plots surrounding each 
contour plot indicate the frictional flux through the nearest boundary to each box 
(-^if VC) as a function of distance along the boundary. The flux through the western 
boundary needed to remove the wind stress input at the same latitude (as in the Un- 
ear Munk solution) is overlaid with dashed Hnes. Arrows denote the direction of the 
frictional flux of positive vorticity. Not? that the scales of the flux plots are different. 

the no-slip calculation as expected. 

Figure 4-18 shows the distribution of absolute vorticity for different two-gyre calcu- 

lations. Figures 4-18(a-c) demonstrate that as the boundary current overshoots in the 

two-gyre slip calculations, it advects mean flow relative vorticity. The recirculation 

that forms at the northern boundary is formed from this advected relative vorticity, 

and it is relatively homogenized, just as the recirculation gyre is in the single-gyre 

calculations. The two-gyre no-slip calculation in figure 4-18d also shows evidence of 
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Figure 4-18: Contours of the absolute vorticity for the (a) sHp, Re(bdy)=2 5 
Re(mt)=2.5, two-gyre calculation, (b) slip, Re(bdy)=5, Re(int)=5, two-gyre calcula- 
tion, (c) slip, Re(bdy)=10, Re(int)=10, two-gyre calculation, and (d) the Re(bdy)=5, 
Re(mt)=5 two-gyre no-slip calculation. Contour interval 0.05. 
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Figure 4-19: Comparison of contours of the time-mean streamfunction for different 
basins and wind forcing with Re(bdy)=2.5, Re(int)=2.5, and sUp boundary condi- 
tions. Regions of negative streamfunction are shaded. The arrows on the figure give 
the eddy flux of vorticity across that zero contour of psi. (The total vorticity input 
from the wind to the subtropical gyre is 0.637). The contour interval is 0.2 in (b-c) 
and it is 20 in (a). 

advection of relative vorticity, but as the boundary current does not overshoot with 

no-slip boundary conditions, the advection is toward the basin interior. There is only 

a small region of pooled vorticity in the no-slip case, as expected because there is not 

a large recirculation gyre. 

Figures 4-19 and 4-20 summarize the results of the single-, two-, and double-gyre 

calculations with slip boundary conditions. In the single-gyre with slip boundary 

conditions, a lack of eddy activity requires an enormous circulation strength so that 

frictional dissipation can balance the wind input. In the two-gyre case, an inter-gyre 

flux of vorticity by both the mean and eddy fields reduces the amount of vorticity 

to be removed by friction.  By comparing with results at higher Reynolds number, 
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Figure 4-20:    Comparison of two-gyre slip calculations with constant viscosity 
(Re(bdy) = Ra{int) = Re) and increasing Reynolds number.   The arrow indicates 
the eddy flux across the mean streamline dividing the gyres, (a) Re=2.5, (b) Bje=5 
and (c) Re=10 

it seems that the mean flow is the preferred mode of reducing the vorticity input, 

probably because it lengthens the western boundary current. Some of the eddi^ 

generated by instabilities of the jet also allow for an eddy flux of vorticity to the 

frictional sublaj^r. Finally, in the singular case of the double-gyre, the antisymmetry 

of the wind forcing prevents the inter-gyre mean flow, so the eddy AXDC is the only 

transport and primary remover of vorticity. 

In summary, when slip boundary conditions are used for multiple-gyre calcula- 

tiom, the r^ults are quite different from those with no-sUp boundary conditions. In 

the double-gyre, the inter-gyre eddy flux become quite large, and is the dominant 

sink of vorticity input from the wind. Because the slip boundary conditions tend not 

to create eddies near the boundary as in the no-slip conditions do, the mechanism 

of an eddy flux to a frictional sublayer is not as important as the inter-gyre flux in 

the double-gyre. However, when the exact antisymmetry of the double-gyre is broken 

in the two-gyre calculations, the western boundary current of the subtropical gyre is 
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unopposed and overshoots, eventually dominating the subpolar gyre. By experiencing 

the opposing wind forcing, the fluid carried by this mean flow is able to reduce the 

circulation input to the subtropical gyre. In an asymmetric multiple gyre calculation, 

this seems to be the preferred method for sharing the opposing wind forcing, not the 

inter-gyre eddy flux. 

4.4    Mechanisms for Control of Circulation Strength 

Figures 4-2, 4-4 and 4-19 clearly demonstrate that there is a difference in the subtrop- 

ical gyre across the three basins and forcing schemes whether slip or no-sUp boundary 

conditions are used. The subtropical gyre circulation strength is much stronger in the 

single-gyre calculations where a pronoimced recirculation gyre forms. In the two-gyre 

calculations and the double-gyre calculations, the recirculation is significantly weaker, 

and the circulation is close to the transport in the Unear Munk model in the no-slip 

cases. 

The preceding section shows that for sUp boundary conditions, an inter-gyre flux 

of vorticity cancels much of the wind-stress input in the double-gyre calculations. 

The mechanism of this exchange is primarily the dissipative meandering mechanism 

proposed by Lozier and Riser (1990), not an exchange of mass. In this section, 

the reasons for the small amount of mass exchange are explored. Also, the reason 

why dissipative meandering is active in the sHp calculations but not in the no-slip 

calculations is shown to be that the separation point does not vary in the no-sHp 

calculations. However, as shown m section 4.3, the dissipative meandermg mechanism 

is not dominant in the asymmetric two-gyre calculations where the mean subtropical 

flow dominates the subpolar gyre. 

The two-gyre and the double-gyre calculations with no-sUp boundary conditions 

have very similar shape and circulation strength (very nearly the Sverdrup transport). 

Apparently, the mechanism which controls the circulation is relatively insensitive to 

200 



the strength of the subpolar gyre. Ako, as w^ shown in section 4.2, the inter-gyre 

eddy fluxes are negKgible while the eddy fluxes to a frictional sublayer axe strong, just 

as in the single-gyxe calculations. In this section, it wiU be shown that these results 

indicate that new modes of instabiUty along the jet are responsible for an increase in 

the efficiency of the eddy flux to the frictional sublayer, and this increased efficiency 

prevents the buildup of vorticity which causes the recirculation gyres and reduce the 

circulation strength. 

4.4.1    Inter-gyre Eddy "B-ansport 

The first hypothetical mechanism for the control of the circulation strength by eddi^ 

is that they might exchange mass and vorticity across the inter-gyre boundaxy by 

semi-permanent exchange of fluid parcels. 

However, it has recently been weU-estabUshed in the hterature that there is little 

mass transport between the gyres in a wind-driven model, even when there is vorticity 

trai^port. Previous numerical simulatiom have shown that it is difficult to transport 

mass across the jet (Berloff et al. (2002), and Berloff and McWiUiams (2002), Lozier 

and Riser (1989), and Lozier and Riser (1990)). In fact, Lorier and Riser (1989) found 

so Mttle mass transport across the boundary current that they proposed the mech- 

anism of di^ipative meandering to explain how the vorticity could be transported 

without mass exchange. Observations of the ocean by Bower and Ro^by (1989) also 

indicate a small mass exchange across the Gulf Stream. 

In the laboratory and atmosphere-especially the stratosphere-^o-called potential 

vorticity barriers have been found (see, for example, Haynes and Shuckburgh (2001) 

and Pierrehmnbert (1991)). These regiom p<^e^ large gradients of potential vortic- 

ity, and are barriers to feentropic eddy transport. As pointed out by Pierrehmnbert 

(1991), it is unclear whether the large gradients of potential vorticity are a result of 

weaker turbulent mixmg or earning weaker turbulent mbdng. 

To address the question of mass trai^port across and near jets, there have been 
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studies of chaotic advection near jets. Pratt et al. (1995) and Rogerson et al. (1999) 

have analyzed the Lagrangian stirring for idealized quasi-geostrophic and barotropic 

jet models. In their analysis most of the Lagrangian transport across mean streamHnes 

occurred near pronounced eddies with Kelvin's cat's eyes which form to either side of 

the meandering jet. Balmforth and Piccolo (2001) find similar cat's eyes structures in 

solutions of the evolution of a Bickley jet^ with dynamical equations identical to those 

used in this dissertation. Figure 4-21 is a reproduction of a figure from Rogerson et al. 

(1999) which shows extensive stirring in the location of the cat's eyes, but very little 

mixing across the jet. Rogerson et al. (1999) proceed with a lobe dynamics analysis 

of the meandering of this jet. They show that the cat's eyes possess hyperbohc points 

of the flow in their reference frame. That is, points where mean streamUnes converge 

along one direction and diverge along another. When these hyperbolic points are 

subject to time-dependent perturbations, as is the case in periodically-varying or 

dynamically-varying flows, substantial fluxes of mass and conserved properties cross 

the mean streamhnes which approach the hyperbohc points. By numerically locating 

these points and the trajectories which approach them, Rogerson et al. (1999) are 

able to demonstrate significant cross-streamUne mixing to either side of the jet. 

, However, they find no transport across the jet. This is because for the eddies to 

form hyperbohc points within the jet, they would need to be extremely strong; strong 

enough to halt the jet altogether. In regions of large potential vorticity gradients, the 

streamlines are bunched very closely together, and so it becomes very difficult to 

form hyperbolic points within the closely bunched streamhnes thereby blocking the 

transport across them. 

Despite differences in the models and forcing, the double-gyre and two-gyre no-shp 

calculations presented here have regions of large absolute vorticity gradients where 

the eddy fluxes across mean streamhnes are decreased. Figures 4-22 and 4-23 show 

the regions of large absolute vorticity gradients in the no-shp calculations. The black 

^The Bickley jet is a jet in an infinite plane with initial velocity U oc sech^{z) where z is the 
cross-jet coordinate. 
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Figure 4-21: Evolution of the flow as represented by the potential vorticity field of 
a weakly-perturbed meandering barotropic jet (initial streamfunction: i>{z,y,t = 
0) = -erf(|/) -I- 2y/LD + €e-^sm{kx)) in a doubly-periodic domain. This figure is 
reproduced from figure 4 of Itogereon et al. (1999). 

regions in these figures show where the gradients of absolute vorticity are large. Ac- 

cording to the vorticity gradient barrier theories, these regions are barriers to the 

eddies. The firictional boundary layer has the largest vorticity gradients, but the gra- 

dients extend to the region near the inter-gyre boundary in the calculations with two 

gyres, presumably carried out of the boundary layer by advection. These regions ap- 

parently block eddy transport, both of mass and vorticity in the no-slip calculations. 

Thus, it seems that it will be rather difficult for eddies to move directly from one gyre 

to the other, as these vorticity gradients will tend to block their progress. 

Figure 4-24 shows that a similar region exists where the jet separate the gyres in 
f,:; 
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Figure 4-22: Comparison of magnitude of time-mean absolute vorticity gradient 
squared for different basins and wind forcing with Re(bdy)=5, Re(int)=5 and no- 
slip boundary conditions. Superimposed is the time-mean streamfunction with a 
contour interval of 0.2. 

Figure 4-23: As in figure 4-22, except for the Re(bdy)=0.25, Re(int)=5 calculations 
with no-slip boundary conditions. 
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Figure 4-24: As in figure 4-22, except for the Re(bdy)=2.5, Re(int)=2.5 slip boundary 
condition calculations. 

the double-gyre, slip calculation. Again, as demonstrated by previous work, there is 

Httle mass transport even with slip boundary condition, however there is significant 

vorticity transport across the dividing jet. As pointed out by Lozier and Riser (1990), 

there must be another mechanism allowing the transport of vorticity across the jet 

which does not rely on mass transport. This mechanism appeara to operate with slip 

boundary conditions, but not with no-slip boundary conditions. 

In summary, it is well establtehed in the literature that Uttle or no inter-gyre 

exchange of mass occurs with slip boundary conditioi^ for a jet of the strength in 

th^e models, and as there is no vorticity transport very little is exchanged with no- 

shp boundary conditions as well. Only irreveraible mixing across the center of the jet 

dividing the gyres could contribute to the inter-gyre vorticity flux. As the pronounced 

regiom of stirring in models similar to this one are located to either side of the jet, 

with hyperbohc points that are not located in the center of the jet, the stirring does 

not tend to mix across the center of the jet. Instead, the properties are strongly 

mixed to either side of the jet, a fact which will be very important to the hypothesis 
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to be presented to explain the differences in circulation when a second gyre is added. 

4.4.2    Dissipative Meandering 

Unlike the idea of direct fluid parcel exchange, dissipative meandering does not require 

irreversible stirring across the jet. Its irreversibiUty stems from the action of friction. 

However, there can be little or no dissipative meandering in the no-slip calculations 

here as there is almost no inter-gyre vorticity flux. At the same time, there is a large 

amount of dissipative meandering in the sUp calculations here and the calculations of 

Lozier and Riser (1990) (and probably of Marshall (1984) and Harrison and Holland 

(1981)). As we have seen in the preceding sections, the only significant inter-gyre 

eddy fluxes here occur in the double-gyre, shp calculations. In this section, we will 

examine where the eddy flux occurs, how it occurs, and why it does not occur with 

no-slip boundary conditions. 

Consider a vorticity anomaly caused by the displacement of a parcel of subtropical 

water across j/ = 1 in a calculation with sUp boundary conditions. With shp boundary 

conditions, the vorticity of the boundary current is predominantly of the same sign 

as that of the wind input within that basin. Thus, the displaced parcel of subtropical 

water is Ukely to be a negative vorticity anomaly. 

If the parcel is in the interior, is it Ukely to return to its initial position unchanged, 

and the vorticity anomaly will propagate away reversibly as a Rossby wave, experi- 

encing Uttle dissipation. The isohne of vorticity which is displaced is hkely to be 

left unbroken. As the Rossby wave forms, there will be a negative eddy vorticity 

flux (negative vorticity traveUng north) as the parcel is displaced. However, as the 

Rossby wave propagates away, a positive eddy vorticity flux (negative vorticity trav- 

ehng south) will result. As the isoHne returns to its initial position, no net eddy flux 

is achieved. 

However, if the parcel is near the boundary, then quite a different process is 

possible. Now, the isohne of vorticity is displaced northward (a negative eddy flux) 
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then some of the anomalous vorticity of the parcel is fluxed hy friction out through 

the western boundary. If the parcel now returns to its original position at the same 

speed as it originally crossed the inter-gyre boimdary, its eddy flux is reduced upon 

return. Thus the outgoing eddy flux is larger than the returning «idy flux. 

Figure 4-25 sho^ro snapshots of a meander near the boundary crowing the inter- 

gyre boundary, reducing in strength, and then returning. First, beginning at time 

5030 subpolar water is displaced to the south. A large southward eddy flux results 

until time 5060, when the motion is slowed. Then, the action of di^ipation takes 

over, and the vorticity anomaly returns to the inter-gyre boimdary without an inter- 

gyre eddy flux. Next, a substantial eddy flux close to the boundary fe formed as a 

subtropical anomaly moves north from time 5070 to 5100. Then, before the dissipative 

action has much time to return the vorticity to its average petition, another anomaly 

of relative vorticity north of the inter-gyre boundary appeare. As this the positive 

vorticity anomaly moves south across the inter-gyre boimdary in times 5110 to 5115, 

again a southward vorticity flux results. The last image shows the average eddy flux 

divergence, which confirms that, on average, the eddy flux d^cribed above results in 

a noticeable transport of vorticity which starts and ends in the regions where th^e 

eddy fluxes tend to start and end during the d^ipative meandering. 

In the case of no-slip boundary conditions, the vorticity at the bomdary current 

separation point do^ not move north and south, because the frictional boundary 

condition demands that the along-boundary velocity that would advect the vorticity 

must go to zero. Although the fluid further away from the boundary is free to migrate 

north and south, it will not have a direct connection to the boundary, and therefore 

the frictional flux acting on it wiU be decreased. In fact, the condition of what 

makes the fluid cross the inter-gyre boimdary rapidly fe precisely how far out of 

the frictional sublayer it li^. Therefore, the mechanism of dissipative meandering is 

strongly curtailed and the eddy fluxes are quite difierent. 

Also, unHke the shp boundary current, the no-sUp boundary current must possess 
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t=5100 t=5105 t=5110 t=5115 Flux Divergence 

Figure 4-25: Snapshots zooming in on the separation region of the slip 
Re(int)=Re(bdy)=5 calculation. Shading denotes relative vorticity, darker is more 
negative, lighter is more positive. The solid line denotes the average position of the 
inter-gyre boundary. Arrows denote the local instantaneous value of eddy vorticity 
flux: u'?'. Lower right image shows the time-mean eddy flux divergence (dark/light 
values are divergences/convergences). 
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Figure 4-26: Relative vorticity and meridional velocity near the boundary layer at 
particular value of y in the subtropical gyre for a slip and a no-slip calculation. 

relative vorticity of both signs (see figure 4-26). As one moves away from the boundary, 

the velocity first increases from zero and then decreases to its interior value. This 

impli^ that the relative vorticity is of oppc^ite sign to the wind input of vorticity 

on the shoreward side of the boundary current and of the same sign as the wind's 

vorticity input on the seaward side of the boimdary current. 

Figure 4-27 shows a typical evolution of fluid near the boundary with no-sHp 

boundary conditioi^. Note that the eddy fluxes acro^ the inter-gyre boundary are 

quite smaU. There are signiflcant eddy fluxes, but they tend to be between the 

boundary and the interior, a^ociated with dipole vortices, a vortex of one sign paired 

with another of the opposite sign. This dipole structure is directly related to the 

fact that the boundary current must have relative vorticity of both sigm when no 

slip boundary conditions are used. It is possible for th^e dipole vortices to cross 

the inter-gyre boundary, but their vorticity anomahes are cancellatory. The average 

eddy flux divergence pattern shown m the last image is quite different from that in 

figure 4-25, as it indicates a strong interaction between the frictional layer near the 
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boundary and the interior. 

Thus, the inter-gyre flux in the no-slip case is limited to processes which occur 

some distance away from the boundary, decreasing the effectiveness of dissipative 

meandering. As mentioned above, the weakly frictional propagation of Rossby waves 

can produce a small inter-gyre transport. Also, the small amount of mass transport 

can produce inter-gyre vorticity fluxes. However, as the eddies in the no-slip case 

tend to be dipole vortices formed in the boundary current, which have cancellatory 

vorticity fluxes if displaced across the inter-gyre boundary. Other mechanisms will be 

proposed in the following sections which could account for small amounts of vorticity 

flux. 

Figure 4-28 shows the eddy fluxes across y = 1 for the calculations shown in 

figures 4-25 and 4-27. Obviously, the eddy flux is significantly larger in the case of 

slip boundary conditions. The majority of the eddy fluxes occur in a region near the 

boundary, which is consistent with the mechanism of dissipative meandering. 

Farther away from the boundary, there are smaller vorticity fluxes of alternating 

sign in the shp fluxes. These fluxes are hkely to be due to either the dipole vortex dis- 

placements or a correlation in the phase of Rossby waves over the averaging interval, 

as these vorticity fluxes integrate nearly to zero. 

In the small vorticity flux from the no-shp calculation, it is quite convincing that 

there is Httle dissipative meandering in the no-sUp calculation. In fact, the flux closest 

to the boundary is of the wrong sign because the relative vorticity within the frictional 

sublayer is of the opposite sign from the wind forcing with no-sUp boundaries. Thus, 

there are local regions of average vorticity flux even in the no-slip case. However, as 

these regions integrate almost exactly to zero, they are hkely to be due to one of the 

reversible or cancellatory processes just described. 

Thus, the mechanism of dissipative meandering appears to rely critically on the |T 

location of the point of jet separation from the boundary and the overwhelming bias ■ : ' 

of the vorticity anomaly when sHp boundaries are used. If this point of separation ^''^ 
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Figure 4-27: As in figure 4-25 but for the noslip Re(int)=Re(bdy)=5 calculation. 
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Figure 4-28: Direct estimates of eddy vorticity fluxes across y = 1 for the Re(int)=5, 
Re(bdy)=5 calculation with no-sHp boundary conditions and with slip boundary con- 
ditions. The mean fluxes across y = 1 are negUgibly small in comparison. 

wanders backs and forth and the anomahes tend to be one sign or the other, then 

dissipative meandering can take place and can be quite strong. On the other hand, if 

the location is fixed or the relative vorticity anomahes tend to be canceUatory then 

dissipative meandering will be only a weak effect. 

Obviously, a barotropic model of the ocean circulation does not represent the 

dynamics near the boundary very well. However, the two critical features of the dis- 

sipative meandering mechanism will Ukely still apply: 1) it must occur close to the 

boundary to aUow for dissipation and 2) it requires significant meandering across the 

inter-gyre boundary. Thus, considering the Gulf Stream, the motion of the separation 

point should govern the amount of dissipative meandering. However, the Gulf Stream 

does not meander significantly north and south along the coast; it tends to separate 

near Cape Hatteras with a relatively fixed separation location. Some have even pro- 

posed that it is the topographic steering of Cape Hatteras that causes the separation 

at this location (for example, Marshall (2001)). These results tend to imply that the 

fixed location of the Gulf Stream wiU prevent significant dissipative meandering, and 

therefore this mechanism will be of Hmited applicabihty in the North Atlantic. 
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In the real ocean, whether the relative vorticity of the eddies displaced acro^ the 

boundary wiU be biased or not is an interesting question. The center of the Gulf 

Stream mov^ faster than its sides, which giv^ it vorticity of both signs as is the 

case in the no-shp calculations, although the shoreward side is not unmoving, so the 

cancellation is not as great. A more interestmg question is if the sign bias introduced 

because eddies north of the Gulf Stream tend to be warm-core eddies, while those 

south of the Gulf stream tend to be cold-core eddi«. Thus, by thermal wind, there 

may be a bias on relative vorticity imposed by the temperature gradient. 

In summary, although the idea of eddi^ being able to transport vorticity from 

one gyre to the other is a compeUing one, it is not guaranteed to occur. The method 

of inter-gyre vorticity exchange in the shp calculations presented here appears to 

be caused primarily by dissipative meandering. Because the irrevereibility of this 

exchange is due to the direct action of friction, which is only very effective near the 

western boundary, the meandering must occur very close to the western boundary. 

Since no-sUp boundary conditions prevent the jet from meandering along the coast 

and have a cancellatory vorticity structure in the boundary current, this effect is 

neghgible in the nc^slip calculations. Thus, in the real ocean the separation point 

of the boundary current must wander in time along the coast and there must be a 

bias of the relative vorticity anomaUes advected by this meandering for there to be 

an inter-gyre flux of vorticity by dissipative meandering. 

4.4.3    Exposure to Opposing Wind Forcing 

Although the hypothesis of one gyre transiently experiencing the wind forcing of the 

other gyre seems distinct from dissipative meandering, in fact, th^e two hypothecs 

are closely related. In this section, I wiU demonstrate that transient exposure to the 

opposite wind-stress also imphes a correlation in i^- UnUke dissipative meandering, 

this mechanism does not require the eddy flux to be near the boundary, so it could 

contribute in both the no-slip and the sUp calculations. However, it is clear from the 
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small magnitude of the inter-gyre eddy flux in the no-slip case that this mechanism 

cannot be of primary importance in controlling the circulation strength. 

Consider a parcel of fluid displaced across the zero wind-stress curl line. As the 

parcel experiences the wind forcing of the opposite sign of its native gyre, its relative 

vorticity magnitude will decrease (assuming its vorticity is of the sign typical of its 

gyre). If the the parcel returns to its original location at the same speed it left, 

its return results in a smaller eddy flux than its departure. Thus, a time-average 

inter-gyre eddy flux results. 

This mechanism is obviously in operation in both the slip and no-slip calculations; 

even hnear displacements of parcels by Rossby waves under a wind forcing would 

result in an eddy flux. However, the wind forcing's production of vorticity is simply 

not strong enough when compared to the rate of relative vorticity supphed by the 

boundary current. This is essentially because the wind stress curl changes direction 

smoothly at the inter-gyre boundary from negative in the subtropical gyre to positive 

in the subpolar, so the magnitude of the wind forcing is very small near the inter-gyre 

boundary. Therefore, only very large excursions of the jet would reach the region of 

strongest wind forcing (located near y = 0.5 and y = 1.5 in the double-gyre), and 

even then the excursions would need to cover a significant area in order to absorb a 

significant area-averaged change in vorticity (circulation). Thus, temporary exposure 

to the opposite wind forcing is Ukely to be a negUgible contribution in this parameter 

range. 

To prove this point, figure 4-29 demonstrates that removing the opposing subpolar 

wind-stress does not significantly affect the subtropical gyre circulation when no-sHp 

boundary conditions are used. By comparing this result to the one shown in figure 4- 

2, it is clear that the subtropical gyre is not significantly affected by the subpolar 

wind forcing in the case of no-slip boundary conditions. 

In summary, transient exposure to opposing wind forcing experienced by displaced 

fluid parcels is negligible when compared to the dissipative meandering in the slip 
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Figure 4-29: Contours of the time-mean streamfunction for a no-slip, Re(bdy)=5, 
Re(int)=5 calculation with singl^gyre wind forcing between y = 0 and 1 and no 
wind forcing for y > I. The northern boundary is located at y = 1.56 as in the 
two-gyre calculations. 

calculation. It K a weak effect in no-sHp calculations, as it would require an inter- 

gyre vorticity flux, and no-shp calculations without opposing wind stre^ are relatively 

unchanged. 
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4.4.4    Sinuous Modes: Breaking the Initial Symmetry of the 

Double-Gyre 

The final hypothesis that I present in this section is novel. Consider that it is highly 

likely that the structure of the eddies changes dramatically when the northern bound- 

ary present in the single-gyre calculation is removed upon addition of a second gyre. 

By the introduction of these new modes of variabiUty, the eddy flux of vorticity to 

the frictional sublayer (and the inter-gyre eddy flux as well) can be made significantly 

more eflacient, destroying the recirculations and thereby controlling the circulation 

strength. As we have seen in section 3.7, the j&rictional sublayer is capable of more 

easily handUng vorticity flux when it comes in more than one form; apparently the 

same effect applies here. 

It is well-known that the sinuous instabilities of jets have significantly larger 

growth rates and therefore effect a much larger eddy advection than varicose modes. 

Sinuous modes are even in the streamfunction by definition (see figure 4r30), so they 

cannot have corresponding instabifities in the single-gyre because the northern bound- 

ary requires tp = 0. Only the slower-growing varicose modes of the jet can have 

cousins in the single-gyre. Actually, the presence of either a northern boundary with 

sHp conditions or exact antisymmetry between the two gyres allows for only the 

weaker varicose instabiHties to form. Therefore, removing the northern boundary or 

breaking the exact antisymmetry of the double-gyre leads to an enormous increase 

in the effectiveness of eddy activity. This result is well known for the instabiHties 

of non-rotating two-dimensional jets (for example, Drazin and Reid (1981), Lamb 

(1932)). Recently, Bahnforth and Piccolo (2001) demonstrated this result for insta- 

bilities of the Bickley jet with rotating, barotropic dynamics identical to those used 

in this dissertation. 

Of course, in all of the calculations, instabiHties which occur in the western bound- 

ary current before separation are present and active (although much more active in 

no-slip calculations than in slip).   The single-gyre and antisymmetric calculations 
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Figure 4-30: Schematic of symmetry properties of sinuous and varicose modes of insta- 
bility on a jet. The thick hnes represent initial jet streamUnes, the thin lines represent 
streamlines after the instabiUty has grown somewhat. The pluses and minus^ denote 
streamfimction anomalies. 

have these western modra as well as the varicose modes.^ In section 3.4, most of the 

large variance EOFs of relative vorticity seemed to represent western modes of insta- 

bmty, and the eddy flux divergence patterns are typically contained near the w^em 

boundary. Thus, it is likely that these modes are more important than the variccBe 

ones. In the two-gyre and double-gyre calculations, relative vorticity EOFs reveal 

both sinuous modes and w^em mod^ are present with roughly equal variances (not 

shown). 

Figure 4-31 demonstrate that like the single-gyre, the exactly antisymmetric 

double-gyre calculation has difficulty in controUing its circulation strength. This 

figure shows that in the exactly antisymmetric double-gyre calculation started from 

exactly antisynmaetric initial conditions, the solution evolves with exact antisymme- 

«Here I mean the single-gyre as used throughout this dissertation with sHp northern and southern 
boundaries. Obviously, a nc^slip northern boundary condition would make the northern boundary 
quite unlike a neighboring gyre's jet. r"-: 
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Figure 4-31: Comparison of the time-mean streamfunction for no-slip, Re(bdy)=5, 
Re(int)=5 calculations, (a) and (c) are averages over different time intervals for a 
calculation with an at rest (symmetric) initial condition, (a) is the time-mean over 
an interval just before exact antisymmetry is broken by numerical errors (t=2000 to 
2750), and (c) is averaged over the time-interval t=8990 to 13710. (b) shows the 
time-mean streamfunction for the single-gyre calculation, (d) shows the time-mean 
streamfunction for the calculation with symmetry-breaking initial conditions. The 
contour interval is 0.2, regions of negative streamfunction are shaded. 

try for a time. Eventually (at about time 2500) numerical errors break the unstable 

equilibrium of antisymmetry. However, before the symmetry breaks, the circulation 

had grown very strong, with approximately four times more mass transport than it 

settles out at after the antisymmetry is broken. 

In fact, before the symmetry breaks the calculation appears to have been on the 

way to making two mirror copies of the single-gyre calculation. The subtropical gyre 

in antisymmetric equilibrium solution strongly resembles the single-gyre calculation 

(figure 4-31c) at the same Reynolds number. Differences are easily attributed to 

the incomplete spin-up before the symmetry broke. As shown in figure 3-11, the 

single-gyre calculation in figure 4-31c took approximately 3000 time units to spin-up. 

After the antisymmetry is broken, the solution reaches a new equilibrium state 
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which closely resembles the double-gyre solution started with symmetry-breaMng ini- 

tial conditions (figure 4-31d), although it tate a very long time for the strong circu- 

lation of the exactly antisymmetric circulation to be slowed. 

Figure 4-32 shows that the resemblance between the time-mean streamfunctions 

is not trivial. The eddy flux divergences of the broken symmetry calculations are 

very similar, and the flux divergences of the antisymmetric average and that of the 

single-gyre are afao similar in form. 

Many of the differences in the flux divergence between the antisymmetric spin-up 

and the single-gyre are due to the fact that the antteymmetric average is not fuUy 

spun-up. Also, the time-average of the antisymmetric average was not performed over 

a very long time mterval when compared to the averaging interval of the single-gyre 

calculation (750 time units as opposed to 5000 time units). 

Apparently, the eddies present in the single-gyre strongly r^emble those of the 

exactly antisymmetric double-^re. The removal crisis and reversal in eddy flux di- 

vergence at the boundary near y = 0.5 (which was used as an indication of insufiicient 

boundary viscosity in section 2.3.2) is present in both calculations, although it is not 

as strong in figure 4-32a. Since the reversal in eddy flux divergence is present in 

the antisymmetric double-gyre, it is hkely that as in the single-gyre case, boundary- 

enhanced viscosity would be required to bring the antisymmetric circulation under 

control without breaking the antisymmetry. Even details such as the hook-fike pattern 

in divergence where the boundary current joins the jet are reproduced. 

Figure 4-33 compares snapshots of relative vorticity firom the single-gyre calcu- 

lation to those of the subtropical region of the double-grre calculation before the 

antisymmetry is broken. While many of the eddying features are shared, some are 

not. One prime example is the small, intense negative vorticity eddy that chases 

around the northern part of the recirculation gyre and then enters the gyre in the 

antisymmetric solution. No features of this kind are present in the snapshots of the 

singl^gyre shown, and I have not found many by examining movies of other times 
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Figure 4-32: Comparison of the time-mean eddy flux convergence in a region near the 
western boundary for the no-sHp, Re(bdy)=Re(int)=5 calculations shown in figure 4- 
31 (with the same figure lettering). Some smoothing was applied to (a) and (c). 
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t=7600 t=7605 t=7610 t=7615 t=7620 

Figure 4-33: Snapshots of relative wrticity in the subtropical portion {y between 0 
and 1) of the double-gyre calculation begun with symmetric initial conditions before 
symmetry is broken (upper three rows) and snapshots of the single-gyre calculation for 
comparison (bottom two rows). Shading scheme is the same for the two calculations 
(lighter=more positive vorticity, darker=more negative). 
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and other single-gyre calculations. These small eddies with this trajectory seem to 

be quite common in the antisymmetric double-gyre, however. Thus, the double-gyre, 

though similar to the single-gyre before the breakdown of antisymmetry, is not pre- 

cisely the same as the single-gyre. 

Figure 4-34 shows the breakdown of the jet separating the gyres under the action 

of the sinuous modes. Obviously, the exactly antisymmetric equihbrium is an unstable 

one. The new modes of instabihty which are introduced when the antisymmetry is 

broken drastically change the character of the solution, even though at first there is 

only a tiny asymmetry present from the numerical errors. 

One might wonder where the vorticity from the recirculation goes. First, note that 

this not relevant to understanding the equilibrium state. In equihbrium, vorticity is 

constantly suppHed and constantly removed through the boundaries. To reach equi- 

librium, a balance is only necessary between the inflow and the outflow of vorticity. 

Whatever storage of vorticity is kept in the basin is irrelevant to this budget, except 

that the amount in storage aifects the rate of outflow. In the single-gyre, the amount 

of vorticity contained in the basin has two effects. 1) It can increase the gradient of 

the vorticity right at the boundary, enhancing frictional removal, or 2) it can fuel the 

instabilities which produce eddies which in turn transport vorticity to the frictional 

sublayer. Apparently, the sinuous modes are a mechanism which makes the same 

outflow of vorticity to the frictional sublayer occur with a much smaller requirement 

of fuel from the storage of vorticity. 

Although the removal of the vorticity from the recirculation gyre is not relevant 

to the equihbrium state, the transient problem is also of interest. Although these 

modes are efiicient at transporting vorticity to the frictional sublayer, it still takes 

quite a while for all of the vorticity which had built up in the recirculation gyre to 

be removed from the basin. While the single-gyre spins up in approximately 3000 

time units and the antisymmetric equilibrium takes a similar amount of time, it takes 

approximately twice that long to remove the vorticity from the basin. Over this time 
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Initiolly-Symmetric Double-Gyre 

t=9100 t=9110 t=9120 t=9130 t=9140 

Figure 4-34: Snapshots of relative vorticity in the region surrounding the jet {y be- 
tween 0.5 and 1.5) of the double-gyre calculation begun with symmetric initial con- 
ditions as symmetry is broken (upper four rows) and snapshots after the circulation 
strength has reached equilibrium (bottom row). Shading scheme is the same as in 
figure 4-33. 
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interval, the eddies must transport a flux of vorticity to the frictional sublayer whose 

magnitude is in excess of the wind's forcing for frictional removal. 

During this spin-down process there is some inter-gyre flux of vorticity, but more 

of the spin-down is accomplished with eddy fluxes to the frictional sublayer within 

the same gyre. Integrating the eddy flux divergence for y < 1 and averaging over the 

time interval 3000 to 4000 yields a modest average inter-gyre vorticity flux of 0.04 

out of the wind input of 0.64. The average frictional removal of vorticity from the 

t/ < 1 region over the same time interval is 0.73, so approximately twice as much of 

the excess vorticity is removed frictionally during this time. Of course, it is difficult 

to be sure that this average is accurate, as there is insufficient time to be sure of 

the behavior of the eddies. Averaging over a longer interval (3000 to 5000), the 

frictional removal is 0.71 and the inter-gyre eddy flux is 0.03. The reduction in the 

magnitudes of average removal rate by both friction and inter-gyre eddy flxix with a 

relatively constant ratio between the rates is consistent with an exponential decay of 

the recirculation gyre's vorticity from the basin. 

In section 4.3, the artificiaJity of the subpolar and subtropical boimdary currents 

being equally matched in the double-gyre model was pointed out. Figure 4-31 accen- 

tuates another problem with the exact symmetry of the double-gyre. If the initial 

condition is exactly antisymmetric about y = l and the model is also antisymmetric, 

the solution converges toward the antisymmetric equilibrimn solution. This solution 

has enormous mass transport, and there is no reason to expect it to exist in any 

natvual situation. For this reason, all of the double-gyre calculations in this disser- 

tation were initialized with a non-zero initial state (except for figures 4-31 and 4-32, 

obviously). This made the spin-up time much more reasonable than waiting for the 

numerical errors to break the exact antisynmietry. 

Shp calculations have a similar symmetry-breaking problem as the no-slip calcu- 

lations. I have performed similar calculations as in figure 4-31 with a slip calculation 

and found similar results. The sinuous modes are required for control of the circula- 
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Figure 4-35: This figure shows the ratio of the total vorticity flux across a mean 
streamhne to the frictional flux acrcBs a mean streamline as a function of mean 
streamfunction. The ratio is shown for the no-sMp Re(bdy)=Re(mt)=5 calculations 
(smgk, double, and twogyre) and the Re(bdy)=0.25, Re(int)=5 single-gyre, no-sHp 
calculation. o    o^    = f 

tion strength there as weU. A study by Le Provost and Verron (1987) addresses the 

changes in the jet with shp conditions, but their calculations were too viscous to have 

inertially-dominated equilibria. 

Another way to describe this effect is to say that the eddies are more efficient in 

transporting vorticity across mean streamhne when sinuoi^ modes are present than 

when they are not. In figures 2-10 and 3-4, a ratio of the total vorticity flux across 

mean streamlines to the frictional flux acro^ mean streamhne (a construct similar 

to the Nusselt number) was shown to be a good indicator of the efficiency of eddy 

transport across mean streamBnes. Using this diagnostic, it was demonstrated that 

the eddy flux is made more efficient by introduction of boundary-enhanced viscosity, 

and that the homoparic pair member with larger Re(int) had more efficient vorticity 

transport. 

In figure 4-35, the ratio of the total vorticity flux across mean streamlines to 

the frictional vorticity flux for singl^gyre constant viscosity and boundary-enhanced 
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viscosity calculations, as well as constant viscosity two-gyre and double-gyre calcu- 

lations. This figure shows that although the bo\mdary-enhanced viscosity increased 

the efficiency of cross streamline vorticity flxixes somewhat (by about a factor of 10), 

the introduction of the sinuous modes increases the efficiency of the vorticity fluxes 

dramatically (by about a factor of 30). Thus, in the presence of sinuous modes the 

vorticity tends not to pool in the recirculation gyre causing it to enlarge, instead the 

efficient eddy vorticity flux to the boimdary allowed by the sinuous modes prevents 

its growth. 

By comparing the frictional flux through the western boimdary in the single-gyre 

no-slip calculations in figure 2-7 to the flux through the western boundary in the 

no-sUp, tworgyxe calculation shown on the left of figure 4-17, we see that the vorticity 

removal is quite different when the northern boundary is removed and sinuous modes 

are present. As mentioned above, the firictional flux through the western boimdary in 

the no-slip, two-gyre calculation shown in figure 4-17 reveals that the wind input is 

removed at nearly the same latitude where it is input by the wind. In the single-gyre 

calculations, however, even in the western-intensified solution the vorticity budget is 

satisfied by removal at latitudes different from the input latitude. Thus, the increased 

efficiency of the eddy flux to the firictional sublayer with the introduction of the 

sinuous modes makes the removal of vorticity occur at the same latitude as the input 

(at this Reynolds number), just as in the linear Munk solution. However, we know 

that unHke the Hnear Munk solution, the interior mean flow streamlines never enter 

the region of frictional influence. The eddies are responsible for fluxing the vorticity 

across these streamUnes. The double-gyre, no-slip calculations have a similar removal 

of vorticity at the same latitude as the input. 

Although it is beyond the scope of this thesis to do a full instability analysis of 

these solutions, some results can be shown that are illuminating as to the structure 

and function of the sinuous and varicose instabihties in the shp and no-slip calcula- 

tions. Figure 4-36 is an attempt to separate the effects of the odd modes of variabiHty 
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from the even mod^' effects. This figure is generated in the foEowing way. Consider 

the streamfiinction perturbation from the mean, tp'. It will generally be competed of 

parts which are odd about the jet and parts which are ewn. Although the dynamical 

source of th^e parts is not easily dfrectly determined, if we a^ume that the jet is 

located exactly &ty = l the perturbation streamfunction is easily spHt into odd and 

even parts in the case of the double-gyre. To wit, 

(4.3) 
# = #(y)-#(2-i/) 
^O n 1 

.,   ^   #(y) + #(2-y) 

Likewise for the relative vorticity perturbation: 

C' = W   -   W(y)-W(2-y)     C(y) - C(2 - y) 

C! = VH'   =   V'#(y) + V¥^(2 - y)      C(y) + C(2 - y) 

Now it is easy to invert th^e relations and use thte result to determine the depen- 

dencies of the eddy vorticity flux divergence. 

m. CO = JWo. a)+j{%. a)+JWO. a)+W^.        (4.4) 

These eddy flux divergence represent the self-advection of varicose (odd) variabihty, 

the self-advection of sinuous (even) variabihty, the advection of sinuous variabihty by 

varicose variabihty, and the advection of varicose variabihty by sinuous variability. It 

is these terms which are plotted in figure 4-36. 

It should be clear that this is an imperfect separation of the modes' effects; obvi- 

ously the jet is not exactly at y = 1 and the presence of interaction terms indicates 
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Figure 4-36: Comparison of the eddy flux convergences in a region near the west- 
ern boundary from eddies with different symmetry about y = 1. (a-d) are for the 
Re(bdy)=Re(int)=5, no-sUp calculation, (e-h) are for the Re(bdy)=Re(int)=5 slip 
calculation, (a) and (e) are the total flux convergence. The rest of the images are 
other flux convergences: (b) and (f) are from self-advection of varicose (odd) variabil- 
ity, (c) and (g) are from self-advection of sinuous (even) variability, and (d) and (h) 
are from the interactions between varicose and sinuous variability (see equation 4.4). 
The streamline dividing the gyres is added for reference. 
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that the even and odd mod^ are not independent.   Also, no attempt is made to 

remove or addrras the effects of the western mod^. 

From comparing figure 4-36e and 4-36g, it is clear that the sinuous mode performs 

the bulk of the inter-gyre flux of vorticity in the slip calculation. In fact, the mech- 

anism of dksipative meandering require a sinuous mode. Only a sinuous mode can 

displace the jet alternately north and south. The vaxicme modes in the slip calcula- 

tion do a small amount of mixing to either side of the jet, but contribute httle to the 

inter-gyre flux of vorticity Very Uttle of the eddy flux diwrgence is concentrated near 

the western boundary, so the w^tern mod^ are not very active if they are present 

(note that they were not present in the single-gyre calculation with Re(bdy)=2.5, 

Re(int)=2.5). The sinuous modes' self-advection accounts for 0.40 of the 0.56 mter- 

gyre flux of vorticity in this calculation. The even and odd modes contribute similar 

(small) amounts of eddy flux to the frictional sublayer. 

In the case of no-slip boundary conditions (figure 4-36(a-d)) none of the modes 

effect a significant inter-gyre flux of vorticity It appears that the even and odd 

modes share equally in transpori;ing the vorticity to the firictional sublayer where it 

is removed from the basin. Importantly, however, the removal crisis breakdown in 

the boundary current that occurs in the singl^gyre and when only the varicose and 

w^tem modes are present (figure 4-32) is not pr^ent in any of the flux divergences 

here. Therefore, the incli^ion of the sinuous modes somehow prevents the breakdown, 

which mak^ the dehvery of vorticity to the firictional sublayer much more efficient. 

This gain in efficiency is pr^ent whenever the northern boundary b removed 

from a no-slip calculation. It is present in the double-gyre and twc^gyre calculations 

(figures 4-2 and 4-4), and it is even pr^ent in the case of a subpolar region without 

wind forcing (figure 4-29). Only in exactly antisymmetric calculation or calculations 

with a nori;hem boundary is the efficiency lost, along with the sinuous modes. 

The gain in efficiency can be compared to the gain in efficiency that was seen in 

section 3.7 with the addition of a small amount of bottom fiiction.  Although the 

229 



bottom friction can not flux the vorticity out of the basin at the no-slip boundaries, 

it can deliver it to the frictional sublayer. The increased efficiency meant that the 

frictional removal could take place with a weaker mean circulation strength. There, 

it was unclear whether it was the bottom friction's effective transport of vorticity out 

of the recirculation gyre or its stabiUzation of the eddies which prevented the removal 

crisis. 

Although it remains unclear exactly how the gain in efficiency is made by the 

introduction of sinuous modes, consider the following: since the inter-gyre flux of 

vorticity is negligible for no-shp boundary conditions, it is the eddy flux across mean 

streamlines to the western boundary which is important. Thus, what is critically 

different about the sinuous and varicose and western modes is their ability to strip 

vorticity out of the recirculation gyre and transport it to the boundary in a form 

which is easily dissipated. In the single-gyre calculations the varicose variabiHty does 

not grow quickly enough to remove vorticity from the recirculation gyre, and the 

western modes cannot reach much of the recirculation gyre as it extends to the east. 

It is easy to beUeve that the sinuous modes would be very effective in mixing 

across the mean streamUnes of the recirculation gyre. Both Rogerson et al. (1999) 

and Balmforth and Piccolo (2001) found cat's eye formations with the hyperbohc 

points that cause intense mixing were associated with the growth of sinuous modes 

on the jet. Le Provost and Verron (1987) showed that these modes control the extent 

of the jet even in calculations with large enough bottom friction to prevent western 

boundary instabihties. Also, Bahnforth and Piccolo (2001) showed that the growth 

rates of sinuous modes similar to those here were many times in excess of those for 

the varicose modes. Since the eddy advection is directly related to the growth rate 

for wavelike disturbances, this seems to indicate that the sinuous modes should be 

more effective at mixing in the basin interior. 

The frictional sublayer is able to handle the vorticity flux from both the sinuous 

modes and the western and varicose modes more smoothly than the vorticity flux 
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from just the western and wricree mod^. The removal crisis from section 2.3.2 and 

its reversal in the eddy flux divergence in the frictional sublayer is clearly present in 

figure 4-32(a-b). It fe plain that with only the w^tem and varicose eddies present, 

the frictional sublayer behaves the same as it do^ in the single-^re calculation. 

However, when the sinuous modes appear, the reversal of sign in eddy flux divergence 

in the frictional sublayer disappears, and the frictional sublayer begins smoothly 

removing vorticity from the basin aU along the boundary. Since there is no inter-gyre 

vorticity flux in any of these calculation, the magnitude of the removal of vorticity 

never changes, but including the sinuous modes mak^ the transport to the frictional 

sublayer possible with a significantly weaker mean flow. Recall that it is change in 

the mean flow which are required for frictional removal, m the friction on the eddies 

averages to zero and thus do^ not appear in the Reynolds-averaged vorticity equation 

(equation 2.7. 

This returm the discussion to the possibility that the recfrculation gyre may be 

partially responsible for the removal crfeis. The reversal in the sign of the eddy 

flux occurs near the region of the boundary current where the recirculation gyre 

approaches. In section 2.3.2 I presented two possible mechanisms where growth of 

the recirculation gyre could initiate the removal crisfe. It could affect the eddy fluxes 

to the frictional sublayer, or it could cause a meander m the boundary current and 

produce a reversal in the sign of the friction flux convergence. Obviously, if the 

eddies are not able to remove enough vorticity from the recirculation gyre, it wiU 

continue to gain vorticity and grow in size and strength. Hypothetically, instead 

of the recfrculation ^re being the r^ult of a removal crisis, it could be a cause. 

In the single-gyre, the only way to energize the eddi^ and prevent a recfrculation 

from growing was to enhance the viscosity near the boundary. Once the sinuous 

modes are present, the recfrculation gyre can be reduced by the more efficient eddy 

activity which prevents the storage of vorticity in these ulterior streamlines. If the 

recirculation is calling the removal crisis, then its removal would remove the crisis. 
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Despite the large growth rate of the sinuous modes and the mixing due to the 

associated cat's eyes in the calculations, by separating the even and odd modes in 

the no-slip calculation as shown in figure 4-36 and budgeting the flux through mean 

streamlines, I find that the fluxes across interior mean streamhnes due to the even 

(sinuous) modes are never greater than 40% larger than those due to the western and 

varicose modes for equiUbrated solutions. The interaction modes' fluxes are neghgible. 

Perhaps this indicates that once the antisymmetry is broken the western modes are no 

longer antisymmetric and they contribute equaUy to the even and odd contributions 

to the flux divergences. However, it is clear from figure 4-31 that there are parts 

of the job which the western and varicose modes alone can not do which must be 

done by sinuous modes, even if the equiUbrated state has sinuous and varicose modes 

transporting equal amounts of vorticity. 

In summary, when the northern boundary is removed, there is a significant dif- 

ference in the modes of variabiHty which are possible. The sinuous modes (which 

break the antisymmetry of the double-gyre) are responsible for the inter-gyre flux of 

vorticity in the sUp calculations via dissipative meandering. In no-shp calculations, 

they are responsible for a drastic increase in the efficiency of vorticity dehvery to 

the frictional sublayer. With either boundary condition, they play a major role in 

controlling the circulation strength. 

Relevance of Multiple Steady-state Solutions and Equilibria 

As demonstrated by Cessi and lerley (1990), there are multiple solutions to the 

steady-state, double-gyre calculation of two basic characters, exactly antisymmet- 

ric and asymmetric. The asymmetric solutions have a reduced circulation as the 

antisymmetric ones for the same forcing. The asymmetric solutions have a reduced 

circulation for two reasons. First, their shape is more conducive to the effects of 

friction. Second, the mean flow crosses the y = 1 boundary between the wind Presses 

allowing a reduction of circulation input to each gyre as was in the case in figiire 4- 
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15. However, both sets of solution are greatly in exc^s of the Sverdrup solution, as 

expected for a model without eddi^ (see section 3.8), 

In previous chapters, it is made abundantly clear that the effects of eddi^ are 

critical in controlhng the circulation strength, as they are the only mechanism of 

transport across mean streamhn^ in inviscid calculation. Figure 4-32 demonstrate 

that even in the strong circulation present before the breakdown of antisymmetry, 

the varicose eddy fluxes were aheady playing an important role in fluxing vorticity 

across mean streamlines similar to the one they play in the single-gyre calculations. 

When eddies play a large role, it is tautological that the steady-state and tim^ 

mean solutions be quite different. Steady-state solutions can only represent solutions 

where the friction is considered as a parameterization of the eddy fluxes. It is clear 

in the preceding chapters that friction and eddies behave in quite differently. The 

eddy fluxes are certainly important in this calculation, and thus it is unHkely that 

the steady-state solutions have much direct relevance. 

On the other hand, multiple equihbria, as opposed to multiple steady-state, might 

play a significant role in these calculations. Note that in aU of the double-gyre calcu- 

lations here, the time-mean of the jet tilts shghtly north on the wetern side of the 

basin. Symmetry demands that there be a similar equihbrium with the jet pointing 

slightly south. Clearly, the initial condition used has selected for the northward jet. 

Given the nonhnearity of these calculations, it is hkely that there are other equi- 

hbria than those presented here which could be reached using a different initial con- 

dition. It is highly hkely, for mstance, that there is an exactly antisymmetric equi- 

librium double-gyre calculation where each gyre is very similar to the single-gyre 

solution which is unstable to sinuous modes (although this is very difficult to reach 

numericaUy!). It is also possible, and perhaps even hkely, that there are other equi- 

hbria which differ from those here, but are completely consistent with the governing 

equations. 

Unfortunately, unlike in the steady-state calculations of multiple steady-states, it 
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is extraordinarily difficult to find the bifurcations where these new equiHbria can be 

reached. Likewise, trying different initial conditions to locate the basin of attraction of 

one or the other of the equilibria requires an exponential expansion of computational 

resources. Thus, only a few forays using different initial conditions were attempted, 

and all resulted in results similar to those above. 

4.5    Boundary-Enhanced Viscosity with a Second 

Gyre 

Despite the increased efficiency of the sinuous modes in transporting the wind's vortic- 

ity input to the frictional sublayer and in dissipative meandering when slip boundary 

conditions are present, there remains a role for boundary-enhanced friction with an 

added second gyre. Of course, the intended use of the boundary-enhanced viscosity as 

a parameterization to represent boimdary-related processes remains appropriate when 

a second gyre is present; it remains unfair to ask a constant viscosity to represent a 

heterogeneous collection of physical phenomena. 

Equihbrium is reached when a balance between the inflow and the outflow of 

vorticity is achieved, and the outflow of vorticity is affected by the amount of vorticity 

stored in the basin. Although the sinuous modes are more efficient at transporting 

vorticity to the frictional sublayer and require a much smaller circulation strength 

to do so, for a small enough viscosity even these modes cannot prevent takeover by 

inertia of the basin interior at all Reynolds numbers, because of the large time-mean 

vorticity gradients required to remove vorticity from the basin when the boundary 

viscosity is small. 

Figure 4-37a demonstrates the eventual failure of constant viscosity even in the 

presence of an additional gyre. Figure 4-37a shows that an inertially-dominated 

solution can result even when sinuous modes of instabihty are present; however, 

inertial-domination is postponed until a much higher Reynolds number by the sinuous 
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Figure 4-37: Time-mean streamline of the (a) no-slip, two-gyre calculation 
with Re(bdy)=25, Re(int)=25, 6j=0m and (b) nosUp, two-gyre calculation with 
Re(bdy)=0.25, Re(int)=25, 5j=0.06. The contour interval is 0.1. 

modes. 

However, the removal crisis in the inertially-dominated single-gyre featured a re- 

versal in sign of the eddy flux divergence in the w^ern frictional sublayer. In the 

inertially-dominated two-gyre calculation here, the reveraal in sign is not preent. 

Figure 4-38 shows that the eddy flux divergence of the inertially-dominated two-gyre 

calculation doe not have this feature. 

Nonetheless, figure 4-37b shows that when boundary-enhanced viscosity is used, 

the solution can be made more western-intensified even with Re(int)=25, and even 

when the structure of the removal crisis is different.  At this Re(int) the frictional 
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Figure 4-38: The time-mean streamfunction contours are superimposed on the eddy 
flux convergence shaded for the Re(bdy)=25, Re(int)=25, no-sUp, two-gyre calcula- 
tion. Lighter shading denotes convergences (which remove vorticity of the sign of the 
wind input); darker shading denotes divergences. 

sublayer (and the region of boundary-enhanced viscosity) is 5 times narrower than 

the inertial boundary layer. Thus, the viscosity is 95% of the way to its interior 

value by 0.03, so most of the fluid in the boundary current does not pass through 

the region of enhanced viscosity. Even so, the circulation strength is controlled by 

the boundary-enhanced viscosity, and is quite close in magnitude in the eastern part 

of the basin to the linear, non-inertial steady-state solution. Thus, aside from the 

counter-rotating regions, its eastern half is nearly in Sverdrup balance (as shown in 
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Figure 4-39: ■ Time-mean streamlines of the (a) no-sKp, two-gyre calculation 
with Re(bdy)=25, Re(int)=25, 6j=0.m and (b) nosUp, two-gyre calculation with 
Re(bdy)=0.25, Re(int)=25, 5i=0M. The contour interval is 0.1. 

figure 4-39). A rough approximation of the inter-gyre eddy flux^ estimate that only 

10% of the vorticity input by the wind is canceUed by an inter-gyre flux of vorticity 

Thus, the control of the circulation strength is stiU caused primarily by an eddy flux 

of vorticity to the frictional sublayer sinular to that described in section 2.3.2, but 

in figure 4-37 the vorticity transport is aided by the sinuous eddi^' efficient vorticity 

transport. 

Rough estimation of the expected increase in computer power based on the current 

exponential rate of processor speed increases reveals that weU-resolved calculations at 

this Reynolds number and Sj = 0.02 should be routinely calculable by these methods 

on commonly available computers in less than 20 years. However, even then the 

viscosity would be many orders of magnitude larger than the molecular viscosity 

The increasing resolution would allow the eddy viscosity to continue to be lowered 

in the basin interior, but until the boundaries' physics are explicitly resolved, the 

removal of vorticity there is needed. Thus, parameterizations such as enhancement 

^It is rough due to the numerical difficulties of averaging at thfe Reynolds number. 
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of the viscosity at the boundary will remain important. 

There are many difficulties in making calculations at this Reynolds number. For 

figure 4-37, the inertia! boundary layer width was increased relative to the basin 

dimension to ease the burden on resolution. This is equivalent to reducing the size 

of the basin {5i = 0.06 in figure 4-37, elsewhere in the dissertation 6j = 0.02). 

This increase was necessary so that the firictional scale would be able to be resolved. 

Unfortunately, this iQcrease in the boundary layer width makes the streamlines of 

the inertially-dominated calculation and those of the western-intensified calculation 

appear similar. However, it is clear from figure 4-39 that one of these solutions 

is nearly in Sverdrup balance while the other is not. Even with this increase in 

the boundary layer widths, the resolution for these calculations is marginal when 

compared to the other calculations in this dissertation, with interior collocation points 

separated by approximately the Munk length. The spectral decay of the relative 

vorticity indicates that there are errors present in the calculation due to ahasing and 

truncation of a few percent. 

Interestingly, both of the calculations shown in figure 4-37 possess intermittent 

periods where the kinetic energy grows by approximately a factor of 5. This behavior, 

while fascinating, means that the averages which are presented in figure 4-37 are 

somewhat more approximate than those elsewhere in the dissertation. 

Boundary-enhanced friction also plays a meaningful role in calculations with slip 

boundary conditions, even at moderate Re(int). 

In figure 4-12, the boundary-enhanced viscosity reduced the inter-gyre vorticity 

flux. This reduction is apparently due to both the direct action of the friction, which 

now removes more of the vorticity with the same mean vorticity gradient, and to 

a lesser degree to a small eddy flux of vorticity to the frictional sublayer, an eff'ect 

apparently absent in the constant viscosity case. 

When boundary-enhanced viscosity is used in the two-gyre slip calculation, the 

eddy flux of vorticity to a firictional sublayer and the inter-gyre flux of vorticity are 
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Figure 4-40: Time-mean eddy fluxes and frictional fluxes as in figure 4-5 except the 
calculation shown is the slip, two-gyre, Re(bdy)=0.25, ]Ele(int)=5 calculation. Note 
that only selected streamlines are displayed. 

both present. The use of boundary-enhanced viscosity in the sHp calculations with 

multiple gyres allows for an eddy flux of vorticity to the boundary where there was 

none in the constant viscosity case, just as it did in the single-gyre case. However, as 

in figure 4-12, the primary effect is that the inter-gyre flux of vorticity is decreased 

as the direct action of the enhanced viscosity on the mean flow viscosity increases. 

Interestingly, a second effect of boundary-enhanced viscosity in the two-gyre cal- 

culations is that the inertial overshoot of the two-gyre slip calculations is dramatically 

reduced when enhanced viscosity is used. It is unclear whether at higher Re(int) this 

remains to be the case. 
r-.: 
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To summarize, although the sinuous modes of variabihty greatly decrease the 

circulation strength by making the transport of vorticity to the firictional sublayer 

more efficient, at sufficiently high Reynolds number even these modes cannot pre- 

vent inertial domination as the gradient of relative vorticity at the boundary becomes 

very large to accommodate the lowered viscosity. As the physical basis for using 

a boimdary-enhanced viscosity, that is, parameterization of boundary processes, re- 

mains true for any homogeneous model calculation, it seems sensible to use it in this 

case, just as it can be used in the single-gyre. 

4.6    Conclusion 

Adding a second gyre to the homogeneous model significantly changes the results. 

In the single-gyre, the firictional removal of vorticity through the boundary was in- 

evitable. However, when the wind forcing is of different sign in different regions with 

the basin, not all of the vorticity need be removed from the basin. However, this 

exchange of vorticity is not guaranteed, aad it depends critically on the details of the 

flow, especially the dynamics near the western boundary. 

The choice of botmdary conditions plays a surprisingly important role in calcula- 

tions with multiple gyres. In the case of the double-gyre, sHp calculation, an inter-gyre 

eddy flux of vorticity is the dominant mechanism for the removal of vorticity. On the 

other hand, the double-gyre, no-sUp calculation has an inter-gyre vorticity flux which 

is utterly neghgible in the statistically-steady equihbriimi. 

The difference between the calculations with different boundary conditions can be 

be understood with two observations. First, sUp boimdary conditions are unrealisti- 

cally deficient in instabiUties near the boundary. Thus, they are essentially unable to 

effect a significant eddy flux to a firictional sublayer. Second, the inter-gyre vorticity 

flux in the slip calculation occurs primarily by dissipative meandering. Once the jet 

is held in place by firiction, as it is in the no-sHp calculation, dissipative meandering 
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is nearly impossible. Furthermore, imlike in slip calculations, the boundary current 

in a no-slip calculation contaim relative vorticity of both signs, and therefore when it 

overshoots to the other basin its vorticity anomaly is canceled out to a large degree. 

Without this mechanism for inter-gyre eddy vorticity flux only the relatively weak 

mechanisn^ of tramient exposure to opposing wind forcing and exchange of fluid 

parcels remaiiK. 

The inter-gyre eddy flux's role in sMp calculations is further diminished by the 

results from the two-gyre, shp calculation. In that case, instead of two equaUy strong 

western boundary currents meeting at the jet separation, the subtropical boundary 

current dominate. This donunation results the mean flow overshooting into the 

subpolar wind forcing region. As the Reynolds number increases, the subtropical 

gyre tak^ over more and more of the subpolar gyre. As it does so, the vorticity 

flux carried by the overshooting mean flow has the effect of exposing the subtropical 

gyre to less and less net circulation input while at the same time giving it a longer 

boundary layer to dispose of vorticity The inter-gyre eddy flux remains the only 

mechanism for removing the vorticity input to the subpolar gyre as the subpolar gyre 

is cut off from the western boundary, but the inter-gyre eddy flux is not the dominant 

remover of vorticity from the entire basin in high Reynolds number calculations. 

A profound difference between the single-gyre and the multiple-gyre calculations, 

which also explains the reduction in cfrculation strength in the no-sHp calculations, is 

the introduction of sinuous modes with the removal of the northern boundary. These 

eddies are able to effect an efficient transport to the frictional sublayer which does 

not require a strong interior flow. This mechanism requires no inter-gyre eddy flux, 

agrees with the results of sunulations of free jets, and is present to some degree in aU of 

the calculations here, regardless of boundary condition. The eddy flux is so efiicient, 

in fact, that the vorticity is dissipated at the same latitude where it is input, just 

as in the hnear calculations. Sinuous modes are also responsible for the dissipative 

meandering in slip calculatioiB. 
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The sinuous modes axe able to increase the efficiency of the vorticity transport 

to the fnctional sublayer in the no-slip calculations. That is, they are very active in 

producing eddies which can transport vorticity from the region where the recircula- 

tion gyre would form, yet unlike the modes of instability present in the single-gyre 

calculation, they do not require a strong interior circulation to make them energetic 

enough to perform this flux. 

Thus, the circulation strength is greatly decreased when the sinuous modes are 

present. However, at sufficiently high Reynolds number, even these modes cannot 

succeed in controUing the circulation strength with a constant viscosity, for hke the 

eddies in the single-gyre, they cannot ultimately remove vorticity from the basin. 

At the largest Reynolds numbers performed in this dissertation, inertial-domination 

occurs even in a two-gyre calculation, as the vorticity gradient at the boundary (re- 

quired to remove the vorticity with small viscosity) becomes too large. The use 

of boundary-enhanced viscosity is effective in this case in reducing the circulation 

strength by reducing this gradient, even though the region of the frictional sublayer 

is very narrow. 
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Chapter 5 

Conclusion 

5.1    Wind-Driven Circulation Control by Boundary- 

Enhanced Viscosity 

In chapter 2, calculations of the homogeneous model are presented which indicate 

that the circulation strength of the wind-driven ocean is easily controUed in the 

single-©rre model by adding a region of enhanced viscosity near the boundary. The 

enhanced viscosity is a parameterization of all of the proc^s^ that are capable of 

removing vortidty from the basin. This region is needed in the homogeneous model 

because the simpHcity of the model and its topography do not aUow for the boundary- 

related processes to occur, regardless of the resolution of the model. Therefore, in this 

model, the eddy viscosity is interpreted as a parameterization of boundary proc^ and 

eddies separately, the dilemma of inertial-domination of the single-gyre at moderate 

Reynolck number is resolved, at least for the parameter range achieved here. 

This region of increased viscosity used to parameterize boundary processes here K 

narrow; it decays with the frictional sublayer scale. In many of the calculations here, 

its decay scale is less than half the inertial bomidary layer width, and in the highest 

Reynolds number calculation, it is effective in decreasing the circulation strength 
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(with the help of the sinuous modes) even when it is more than five times smaller 

than the inertial boundary layer width. Thus, in a 100 km wide boundary layer, the 

direct effects of the boundary processes may be effective were they contained in only 

the shoreward 20 km of the current. The results of this dissertation give no reason 

to expect that the size of this region of interaction with the boundary could become 

too small. So long as the boundary processes easily remove vorticity, it is likely that 

an even smaller region would suflBce. 

A reasonable question to ask is whether this process can reasonably be continued 

until the molecular viscosity is reached and the Reynolds number is on the order of 

millions or biUions. In this case, the frictional sublayer defined as it is here would be 

only a thousandth or less of the width of the inertial boundary current. Yet, all of the 

vorticity input would still need to be removed there, according to the ideas presented 

here. Obviously, this model is not intended to be taken to this absurd limit. The 

legitimacy of not only the quasi-geostrophic Umit, but even the shallow-water limit 

will break down long before this occurs. Important eflFects of fully three-dimensional 

turbulent fluid dynamics would need to be considered before considering such a small 

region for frictional removal. 

The results of this dissertation are intended, however, to show that it is not 

necessary for aU of the mean flow to pass through the frictional region or the region 

where vorticity is otherwise ultimately removed. This region can be contained in a 

region near the boundary which is narrower than the inertial boundary layer and 

the eddies will communicate the vorticity input within these interior streamhnes to 

the boundary for removal. Although the parameterization used here choses a region 

of frictional removal which becomes smaller and smaUer with increasing Reynolds 

number, this is a function of the parameterization and is not necessarily a reflection 

of reality. If, for example, an interaction with bottom topography were responsible for 

the removal of vorticity, one would expect this region to remain fixed in size over the 

region of sloping or rough topography as the Reynolds number changed. The results 
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of this dtesertation only indicate that whatever type of vorticity removal exists, it 

need not be in an area larger than the inertial boundary layer width to participate in 

the control of the overall circulation, and not al of the mean flow need pass through 

its region of vorticity removal. 

There is also no problem in the keeping the eddy fluxes large enough, became 

ahnost immediately after the inertial boundary width is wider than the region of 

ultimate removal, almost all of the wind's vorticity input is carried across the interior 

mean streamlines by the eddies. The amount of this flux does not grow with increasing 

Reynolds number, so there is no additional burden on the eddy fluxes. That is, 

regardless of how much of the eddy flux is parameterized and how much is resolved, 

the total flux is constant (although it may change for a particular streamhne). Since 

we began with parameterized eddy fluxes of the same order of magnitude as found 

by LaCasce and Bower (2000) (that is, a Reynolds number of order 1), maintaining 

this magnitude of eddy flux as more of the eddies are resolved is no problem. 

One might think that perhaps this model requires too much eddy kinetic energy 

to carry the vorticity flux. However, Wunsch (2002) analyzes the ratio of eddy kinetic 

energy to mean kinetic energy from TOPEX/POSEIDON sateUite altimetry observa- 

tions and finds that there is 25 to 100 tim^ more kinetic energy in the eddies than in 

the mean flow in the region of the w^em boundary currents. Although the model's 

physics and the type of eddies present differs significantly from the real ocean, the 

models here have not exhausted this Hmit; eddy kinetic energies exceed the mean flow 

kmetic energy by only a factor of 3 or 4 in the models (see figure 2-4). This ratio does 

grow with increasing Re(int), but there is room for a two order of magnitude increase 

and a more sophisticated model could have a very different parametric change in this 

ratio. 

If the region of ultimate removal is small, however, there could be a fair burden on 

this region as the torque there must balance the wind input over the whole ocean. It 

seems reasonable to expect this theory to extend perhaps a few orders of magnitude 
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between the inertial boundary layer width and the width of the region of boundary 

processes parameterized here as frictional removal. But, it is important to remember 

that the proposed shrinking of this region is part of the parameterization used here, 

not part of the oceanic process. If, for example, an interaction with bottom slope were 

responsible for the removal of vorticity as proposed by Hughes and De Cuevas (2001), 

the size of the removal region would be probably less than an order of magnitude 

smaller than the inertial boundary layer. An increase in the bottom torques by less 

than an order of magnitude is entirely reasonable. If smaller regions were responsible, 

one would expect that the higher velocities (especially higher bottom velocities with 

significant topographic interaction) typical of continental shelf dynamics to have more 

than enough room to dispose of this vorticity. Furthermore, as the region of removal 

get shallower, less momentum is required to change the absolute vorticity. Thus, it 

seems that there is quite a bit of room for the removal of the vorticity, so long as 

the region of ultimate removal is within a few orders of magnitude of the inertial 

boundary current width. 

The control of the circulation can be described in terms of the vorticity fluxes 

which transport and remove the wind input of vorticity. In a western-intensified 

single-gyre solution, the wind's vorticity generates a /?-flux of vorticity carried by 

the mean flow toward the western boimdary. The mean flow enters a boundary 

current (in a manner consistent with the dynamics of Chamey (1955) and lerley and 

Ruehr (1986)) as the vorticity flux is transformed to a mean advective flux. When 

the steady-state boimdary current solution is no longer exists or becomes unstable, 

the boundary current forms instabilities. The eddies formed by these instabihties 

transport the vorticity across the mean streamlines to a frictional sublayer where it 

is removed from the basin by a frictional flux. 

In calculations which are very viscous, so that the frictional boundary layer width 

is significantly larger than the inertial boundary layer width, the solutions tend to be 

steady. However, as pointed out by lerley and Ruehr (1986), these steady solutions 
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soon disappear. For a small range of viscositi^ beyond this point, unsteady western- 

intensified equilibria are found. At still smaller viscosities, the effects of inertia are no 

longer contained in a region near the boundary, and the solution becomes inertially- 

dominated, as situation quite unlike the real ocean. 

However, since the viscosity is in part a representation of the effects of eddies, 

it should be possible to lower the vtecosity and r^olve more and more eddies. But, 

becaiKe these eddies cannot remove vorticity from the basin, a removal crisis occurs. 

If the viscosity near the boundary te insufficient for the friction to remove the 

vorticity input, the relative vorticity builds m the basin, increasing the gradients near 

the boundary until the frictional flux is sufficient to achieve equihbrium. Th^e large 

gradients in the vorticity have a profound effect on the character of the solution. & 

however. 

In the single-gyre calculations, these large gradients somehow c&vise the eddy fluxes 

divergence to change sign within the western frictional boundary layer. This change 

in sign is accompanied by a change in sign of the frictional flux through the basin 

boundary nearby Thus, instead of removing the negative vorticity input by the wind, 

m this region the frictional flux provides more negative vorticity to the basin. This 

implies that the frictional fluxes elsewhere must increase their rate of removal of the 

wind's vorticity input, and in doing so fiirther increase the vorticity gradients near 

the boundary changing the character of the solution further. 

When the eddy flux divergence changes sign, the equihbrium is inertially-dommated, 

and the eddy flux^ are no more efficient at dehvering vorticity to the frictional sub- 

layer than the mean fluxes. Thus, the advantage of eddy fluxes over the mean fluxes 

of vorticity, that they can transport vorticity across the mean streamhnes, is lost. 

When the vorticity is aUowed to build in the recfrculation gyre, it increases in 

strength until it reaches the eastern boundary where it is able to draw in additional 

eddies from the eastern frictional sublayer. It is the eddies from the eastern frictional 

sublayer which eventually allows the inertially-dominated solutions to equilibrate. 
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Whether the enlargement of the recirculation gyre is a response to the reversal 

of sign of the eddy flux divergence in the western boundary layer or a cause of it is 

unclear. However, the two phenomena are intrinsically linked and characteristic of 

the inertially-dominated single-gyre calculations. In fact, a qualitative change in the 

temporal and parametric behavior of the single-gyre occurs as soon as the recirculation 

gyre reaches the eastern boundary, and it never does so without a reversal of sign of 

the eddy flux divergence in the western frictional sublayer. 

When a second gyre is added, new modes of instabiHty are present along the jet. 

In particular, the sinuous modes of instabiUty of the jet have rapid growth rates and 

are effective at mixing across mean streamlines to either side of the jet. If care is 

taken to prevent these modes from occurring the dynamics of the double-gyre are 

very much hke those of the single-gyre. Once these modes are present, however, the 

dynamics are quite different. 

In the calculations of the two-gyre and double-gyre models with no-slip boundary 

conditions, despite the promise of internal cancellation by inter-gyre flux of vorticity 

ahnost none occurs. This is Ukely due to the fact that the jet dividing the gyres forms 

a barrier to eddy transport of both mass and vorticity, and that the no-sHp boundary 

condition prevents dissipative meandering of the jet. 

Despite the lack of inter-gyre vorticity flux, the circulation strength is greatly 

reduced in the two-gyre and double-gyre no-shp models when compared to the single- 

gyre model. The only theory presented here which is able to explain this decrease 

in circulation strength is that the presence of sinuous modes make the transfer of 

vorticity input by the wind to the frictional boundary layer very efficient. That is, 

the sinuous modes and the western boundary modes of variabiHty are able to work 

together to flux vorticity across mean streamlines to the factional sublayer where 

it is removed without requiring a strong interior circulation. This differs from the 

single-gyre case where the eddies are not very strong until the circulation strength 

is quite large.   The efficient transport of vorticity by the eddies prevents vorticity 
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from pooling in the basin interior, so that the recirculation gyre is almost completely 

absent at Reynolds numbers where the single-gyre would be inertiaUy-dominated. 

However, the sinuous modes cannot prevent inertial-domination indefinitely, for 

they cannot remove vorticity from the basin. Only the frictional fluxes can do that 

m this model, and to do so they requhe larger and larger vorticity gradients at the 

boundary for smaUer aad smaller viscosity EventuaEy, th^e gradients cause iner- 

tial effects which are powerful enough to overwhehn even the efficient sinuous modes 

of instabiUty, and the equilibrium becomes inertiaUy-dominated. At this point, the 

mechanism of boundary-enhanced viscosity returns to importance, and it is demon- 

strated in chapter 4 that it is also effective in reducing the circulation strength of the 

two-gyre calculatioi^. 

Interestingly, the two-gyre wind forcing was chosen so that there would be a 

net vorticity input to the basin, but in the case of the no-shp calculations, even at 

the highest Reynolds numbers, the gyres do not communicate significant amounts of 

vorticity Thus, in this case, the important feature of the two-gyre calculation is that 

it is usefiil in understanding the broken symmetries reqmred for the sinuous modes. 

This result in the no-slip calculations is surprisingly different from previous results 

where the inter-gyre vorticity flux was the dominant source of vorticity removal. 

Calculations of the sHp, double-gyre model performed here and in Lozier and Riser 

(1990) indicate that the inter-gyre vorticity flux in that case is primarily carried by 

dissipative meandering. This proems reH^ critically on the meandering of the jet 

very near the western boundary layer, and the bias in sign of the relative vorticity 

contained in the boundary current. Thus, the effects of dissipation near the boundary 

are agam critical, even in inter-gyre eddy flux, a process which could in principle be 

inviscid. Again, the sinuous mod^ of instabihty are important, because they are 

required for dissipative meandering to take pl^e. Dissipative meandering does not 

occur in the no-slip calculations because the jet separation is not able to move along 

the boundary and the vorticity within the boundary current can be of either sign. 
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In the case of the sUp, two-gyre model, the inter-gyre eddy fliix is no longer the 

dominant mechanism for vorticity removal. Instead, the subtropical western boundary- 

current overshoots the location where the wind forcing changes sign. As the Reynolds 

number increases, this overshoot increases forming a recirculation gyre at the northern 

boundary. More and more of the subpolar gyre is replaced by this recirculation. Thus, 

most of the wind forcing is appUed to the subtropical gyre's mean flow. The removal 

of vorticity from this gyre is benefited by the elongation of its western boundary 

current and by an eddy flux to the frictional sublayer. Only the wind forcing to the 

much smaller subpolar gyre is canceled by an inter-gyre eddy flux. Thus, with slip 

boundary conditions, it is very important that there is a net vorticity input to the 

basin in the two-gyre calculations, because it is the gyre with the larger vorticity 

input which enlarges to fill the entire basin. 

Thus, in all of the models here, the effects of friction near the boundary plays 

an important role in accepting the eddy fluxes from the interior or in causing the 

dissipation for the dissipative meandering. So, not only the transport of vorticity 

but also the removal of vorticity from the wind-driven gyre is an integral part of 

controlling the circulation strength. 

5.2    Method of Westward Intensification at High 

Reynolds Number 

The mechanisms which select for a western rather than an eastern boundary layer are 

the same mechanisms which allow for a flux across mean streamlines. For this reason, 

the flux across the streamlines occurs primarily in the west. First, during spin-up 

and afterward in nature of the eddies, westward propagation is selected. Second, 

the removal of vorticity from the gyre is selected to occur primarily on the western 

boundary by a frictional sublayer. 

However, what causes Stommel's crowding of streamhnes is the westward P-&vix 
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of the wind's vorticity. The subsojuent intensification is caused by a mechanism 

very similajr to the theory of Chamey (1955) and lerley and Ruehr (1986), forming a 

visco-inertial boimdary layer. 

The solution to the problem of rejoining the models of Chamey (1955) and lerley 

and Ruehr (1986) is solved by the turbulent boundary layer, a boundary layer quite 

similar to found by Edwards and Pedlosky (1998), although the context is quite 

different here. This boundary layer is a turbulent frictional boundary layer where the 

change in absolute vorticity required to rejoin the interior flow is carried out by an 

eddy flux convergence. The eddy fluxes created in the process end in the frictional 

sublayer where the are removed from the basm. 

5.3    Behaviors of the Relatively Inviscid Single-Gyre 

Model 

Once equiHbria which are relatively inviscid in the interior and relatively western- 

intensified are made p(Bsible by boundary-enhanced viscc»ity, a number of phenomena 

are observed with potentiaEy interesting comequences in the real ocean. 

In some pairs of single-gyre calculations with different Re(int) and Re(bdy), the 

time-mean fields and the eddy flux divergences were surprisingly similar. However, 

the eddy fields were quite different. Therefore, the large changes in the eddi^ resulted 

in only smaU changes in the divergence, and the change in the viscosity (together 

with the action of the other terms) compensated, or parameterized the changes in the 

effects of eddies on the mean flow. 

When the boundary current instabiUties are in the appropriate frequency range, 

they excite the basin modes of variabihty While the instabiHties which excite them 

appear to be contained near the w^tem boundary, the basin modes are often the dom- 

inant EOF of the streamfunction perturbation, and they can become strong enough 

to affect the mean flow by nonhnear interaction. 
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. Studying the EOFs revealed not only the basin modes, but other modes of variabil- 

ity in the western boundary current which had fairly sharp frequency peaks. However, 

as RB(int) became large, so did the nmnber of instabiHties and the amoimt of inter- 

action. Rather than a few frequencies associated with the primary instabiHties and 

responses to nonlinear interactions at the sums and differences of their frequencies, 

the frequency spectrum became quite broad. Thus, the variabihty occurred on many 

time scales, including very slow, chmatic time scales. These calculations undergo 

dramatic changes 

One primary effect of the presence of basin modes is the appearance of a counter- 

rotating gyre at the opposite corner of the basin from the recirculation gyre. This 

counter-rotating region has a vorticity balance which is primarily between the eddy 

flux divergence and the wind input. At higher Reynolds number, these regions often 

fill much of the basin which might have been in Sverdrup balance, thereby changing 

the local balance of/?-term to forcing there to a nonlocal eddy to wind forcing balance. 

The flux convergence patterns causing the counter-rotating regions appear to be 

consistent with the effects of the basin modes. Furthermore, when it is arranged 

so that there are regions without wind forcing where the counter-rotating gyres are 

expected to appear, they do appear, although their fundamental balance of terms in 

the vorticity equation is quite diflterent. In those regions, they are primarily a balance 

between the eddy flux convergence and the /?-flux divergence. In this way, and in their 

configuration, they strongly resemble the basin mode-mean flow interactions analyzed 

by Pedlosky (1965b). 

The energetics of the solutions reveal much the same story as the vorticity does. 

As the interior Reynolds number mcreases, the percentage of removal of energy from 

the mean flow by the direct action of friction decreases and the percentage of removal 

by the production of turbulent kinetic energy increases. The boundary-enhanced 

viscosity is able to reduce the energy of the solution in two ways. First, the direct 

removal of energy by friction is contained primarily in the frictional sublayer. Second, 
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unlike in the input of vorticity which is alwa^ fixed, control of the circulation strength 

decreases the wind% energy input. 

5.3.1    Higher Reynolds Number? 

The highest Reynolds number used here is only 25, which means that the Motional 

sublayer scale k only 5 tim^ smaller than the inertial boundary current. Likewise, 

there is only a small separation between the scale of the eddies and the viscous 

dissipation scale. It would have been nice to go to somewhat higher Reynolds numbera 

to have a more fully-developed inertial range, but computational comtraints were 

prohibitive. 

The reasons why the calculations have such a limited Reynolds number range 

is twofold. First, the whole basin was r^olved. With an inertial boundary layer 

width of 0.02, this means that a factor of 50 was sacrificed in resolution in order to 

have a relatively narrow boimdaxy current. Secondly, because the frictional terms 

are the critical variable parameter differentiating the different calculations, it was 

necessary to guarantee the accvuracy of the Mctional terms. This require accurate 

evaluation of the fourth derivative of the streamfunction without dissipative numerical 

errors. Many other calculatioi^ are not so strongly foct^ed on the precise form of the 

fi-ictional terms, so these tenm are evaluated to only moderate accuracy or numerical 

dissipation is allowed. I chose to take great care to properly evaluate the firictional 

terms, which limited the maximum Reynolds number as well. 

It is worth mentioning here what may have been some of the r^ults were I able 

to r^olve more of the inertial range. 

One of the peculiar aspects of having only large eddies to do the job of fluxing 

the vorticity to the boundary layer is that they are ahnc^t all of the scale of the 

boundary current (or greater if the basin modes are included). Thus, when one of 

these eddies te in the region of the boundary current, the boundary current may be 

halted, strongly redirected, or even reversed depending on the strength of the eddies. 
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This can be seen in figure 2-5. In the real ocean, eddy events of this magnitude are 

extremely rare or nonexistent. Presumably, if the flux across mean streamlines could 

be carried by smaller eddies, fewer interruptions might result. 

Also, it is demonstrated in Chapter 3 that as Re(int) becomes large, the tem- 

poral variability becomes less peaked and more broadband. This is an indication 

of the increasing variety of lionhnear interactions with increasingly divers frequen- 

cies. Presumably, were the inertial range much larger, the spectrum would be much 

flatter (with the possible exception of the analogues of the basin modes). That is, 

there would be a more turbulent regime, instead of a weakly nonlinear or moderately 

nonlinear perturbation to the system. 

However, I believe that, as far as the control of the circulation strength is con- 

cerned, most of the effects of resolving the eddy field are aheady present in these 

calculations. I believe that there are likely to be more profound changes with the 

introduction of vertical structure than with the extension of the inertial range. Thus, 

if more computer power is to be spent on this problem, barocHnic effects should be 

included before continuing to higher horizontal resolution. 

5.4    Future Directions of Research 

5.4.1    Toward a Realistic Model of Vorticity Removal at the 

Boundary 

This dissertation does not address specifically what processes are parameterized by 

the boundary-enhanced friction, nor how they operate. Although it is now clear that 

such processes would be of use in controlling the circulation strength, they are not 

identified. Also, it is Ukely that some of the details of the results found here are 

dependent on the form of the parameterization used. In this section I propose a few 

mechanisms and cite the work of others which I think might be promising in rectifying 

this situation. 
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However, it is important to point out that the main thnist of this research should 

hold regardless of the specific mechantem for vorticity removal. That is, the circulation 

strength of the entire basin can be controlled even when the inertial boimdary current 

is wider than the region of vorticity removal. The innermost mean streamhnes need 

not pa^ through the region of vorticity removal from the basin, as an eddy flux will 

trai^port the vorticity input within these streamMn^ acro^ the mean flow toward 

the boundary if there is a mechanism for removal of vorticity located there. 

TMs result becomes even more important when considering a moving layer of 

wind-driven fluid near the ocean surface which is iimilated from the deeper fluid 

and the ocean bottom by stratification. This equivalent barotropic layer will have 

dynamics quite similar to those of the barotropic model studied here, and the removal 

of vorticity input must also be effected by lateral fluxes in an equivalent barotropic 

model. Only when the moving layer enters a region where the bottom topography 

rises to meet it will its dynamics be affected directly by the bottom topography 

When the inertial boundary layer width is wider than the region of interaction with 

the topography, then the mechanism described herein of an eddy flux to the region 

of vorticity removal will be in effect. 

5.4.2    Topographic Interaction 

Hugh^ and De Cuevas (2001) have proposed an interesting mechanism for the removal 

of vorticity from the wuid-driven gyre by bottom topography. They are able to show 

that if the bottom topography is correlated with the bottom pr^ures, then much as 

the pressure correlation to topography in lee waves implies a form drag, the bottom 

pressure on the ocean circulation can produce a form torque. They argue that so long 

as the frictional sublayer is narrower than the region of topopaphic interaction, this 

effect will be the dominant method of removal of the wind's vorticity input. 

However, in their paper, they neglect the role of the inertial boundary layer. They 

argue that the inertial terms are negUgible throughout the ocean (and the use a coaree 
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resolution eddy-permitting model to 'prove' it!), and consider the boundary current 

width of importance to be the frictional ones. I propose that they should not only be 

concerned with whether the frictional layer is wider than the region of sloping topog- 

raphy, but whether the inertial layer is wider. As I have made clear here, the high 

Reynolds numbers that exist in the ocean make it clear that the frictional boundary 

layer should be quite narrow, but the inertial boundary layer is another matter en- 

tirely. A Charney boundary current will be 200 km wide in a 10000 km basin with a 

velocity scale of 1.6 m/s (with /? = 4- lO-^^(ms)-i). Looking at the Maps (1988), it is 

easy to locate regions of the continental shelf east of North America and Asia where 

the depth changes from 500 meters to 3000 meters or more in less than 50 km and 

then changes slowly afterward. Thus, it is quite possible that the inertial boundary 

current could be wider than the region of sloping bottom topography, especially if 

the moving layer of fluid does not extend below a few thousands meters. 

Hughes and De Cuevas (2001) use model results from an 1/4 degree calculation to 

show that their theory is effective in that a balance exists between the wind forcing 

and the bottom drag. I agree that such a result may be ultimately responsible for the 

removal of vorticity from the basin, but I believe that a significant step along the path 

from wind input to ultimate removal may be played by eddy fluxes. As the resolution 

required here to moderately resolve the effects of eddies in the boundary layer was 

better than and equivalent of 1/100 degree, I beheve that their model was too coarse 

to accurately diagnose or rule out the role of eddies. A combination between the 

vorticity removal by form drag proposed by Hughes and De Cuevas (2001) for the 

outermost portion of the boundary current and an eddy flux of vorticity across the 

boundary current as described in chapter 3 is a very effective and relatively inviscid 

model of the vorticity removal from the ocean. 

Topographic interaction with rough coastUnes and shelves is also likely to produce 

eddies near the boundary, aiding in an eddy flux across the boundary current. Hall- 

berg and Rhines (2006) show that the interaction of isopycnals with bottom slope can 
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produce plumes of eddy activity which extend far into the interior even with steady 

forcing. These plumes separate in the interior to form potential vorticity anomalies. 

It would be very interesting to revfeit this sort of calculation in light of the role of 

the boundary in production of eddies and vorticity here. Becker and Sahnon (1997) 

show that the production of eddi^ is significantly different at a sloping boundary 

even in the case of singl^layer calculations. They show that in situations where no 

eddies would be produced with a flat bottom, they are produced with over a sloping 

bottom. Certainly, the dearth of eddy activity formed near the boundary with shp 

boundary conditions (section 3.8) is Mkely to be artificial. 

5.4.3    Density Layer Outcropping 

With approximations to the reduced gravity rotating shallow water equations, Parsons 

(1969) was able to find a non-inertial solution to the wind-driven circulation with fully 

variable depth in a single layer. This model was extended by Veronis (1973), Huang 

and Fherl (1987) and Huang (1987) to include the subpolar gyre and multiple layers. 

Although all of these models have no advection of relative vorticity, in hght of this 

research they present an interesting pc^sible source of vorticity. 

A shaUow-water model which aUows outcropping has a significantly different basin- 

wide vorticity budget than the corr^ponding fixed-depth quasige(^trophic model. 

Two important difference are 1) the importance of the inter-facial firiction terms 

in the vorticity budget is mcreased dramatically as the layer depth decreases, and 2) 

boundary layer separation (and outcropping) reduces the mput due to wind stres. Al- 

though some work has been done on boundary layer separation includmg outcropping 

and even the vorticity dynamics of outcropping usmg isopycnal models (Chassignet 

and Bleck (1995), Chassignet et al. (1995), and Chassignet (1995) for example), the 

impact of these outcropping regions on the basin-wide vorticity budget in relatively 

inertia! calculations has not. 

Models with fixed depth such as the homogeneous model, or even the quasi- 
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geostrophic model, miss the potentially important source of absolute vorticity at 

an outcropping boundary layer. In those models the input of vorticity at the surface 

is always controlled by the wind. In the presence of an outcropping boundary layer, 

however, the vorticity budget could be frictional at the ocean's surface. There are 

two reasons that thk outcropping region might play an important role. 

1) The interfacial friction flux cannot remove vorticity through the sidewalk in a 

no-sHp calculation, but it can remove vorticity at an outcropping boundary where it 

can transfer the vorticity to the next layer. 

2) Became the fluid layer is very thin at the outcropping and thus poss^es Uttle 

mass, relatively small forc^ are needed to change the layer's velocity. Although body 

forces wiU decrease along with the layer's mass and the layer thickn^, surface forc^ 

such as the wind and interfacial friction wiU not decrease. Thus, a smaU imbalance in 

the surface forc^ may cause a relatively large chaage in the velocity when the layer is 

thin. The absolute vorticity budget do^ not consider the thickn^s of the fluid layer, 

just its velocity. Thus, where the layer is thin, relatively weak surface forces will have 

a larger effect on the absolute vorticity budget than where the layer is thick. Thus, 

even if the direct effect of interfacial drag is deemed neghgible in most of the ocean 

where the layer is thick, interfacial drag could be quite important when the layer is 

outcropping and thin. 

If a numerical model related to Parsons (1969) were created, it might reveal that 

there is a major component of the absolute vorticity budget to be found at the out- 

cropping boundary layer. Chassignet (1995) begins an investigation into the vorticity 

dynamics of outcropping boundary layers, but because he doesn't me interfacial fric- 

tion this potentially important sink of vorticity is not available. 

Even if the vorticity supply is not significantly changed by the outcropping bound- 

ary layer, the outcropping clearly repr^ents a new method of adjustment to wind 

stress as only the surface layer is exposed. According to the model of Parsons (1969), 

as the wind forcing increases the outcrop mov^ so that 1^ and less of the surface 
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layer is exposed. In this way, as the wind increases, its forcing is appHed to a greater 

and greater depth of the ocean which reduces the forcing per unit mass. 

Also, as mentioned above, the interaction with topography is a poorly under- 

stood and important part of the circulation. One of the major issues is that equiva- 

lent barotropic flows are effectively insulated from the effects of bottom topography 

Where an outcropping boundary layer separate from the coastUne can therefore con- 

trol how much interaction with the topography occurs, so there is yet another feedback 

between outcropping and circulation strength. 

5.4.4    Other Processes 

If a quadratic bottom drag is more appropriate than Stommel's Hnear bottom drag, 

then the removal of vorticity at the boundary could be enhanced. Obvioi^ly the 

quadratic bottom drag would be larger where the bottom velocities are large, which 

occurs primarily near the boundaries. 

McWiUiams et al. (2001) have studied the hmits of time integrability of the non- 

linear mainly balanced dynamics, or slow manffold dynamics. They hypothesize that 

these breakdowns in the time mtegrabiUty represent indications of the fluid-dynamical 

transitions which lead to the breakdown of the large-scale flow into smaller-scale flows. 

It seems that these ideas could be implemented as a spatially-dependent viscosity- 

like operator and then examined as the homogeneous model was here. Whether the 

breakdowns of the slow manifold amounts to a boundary-enhanced viscosity would 

be a very interesting connection to the work here. The large gradients and the strong 

nonhnear mteractions near the boundaries are obvious places to look for a breakdown 

in the balanced equations, so a boundary-enhanced removal of vori;icity is a plausible 

r^ult. 
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5.4.5    Sinuous Modes 

I was completely unprepared for the r^ults concerning the sinuous modes in chapter 

4, and had I known about these puzzHng effects before beginning the di^ertation, 

they may have been my main focus. These modes' profound effect on the circulation 

strength d^erves much more attention. A significant amount of analytic studio 

with which I am unfamihar would certainly have enMghtened my discussion of these 

modes. Certainly the question remains as to where thrae modes act to transport 

vorticity across the mean streamHn^ and precisely how they do it. These eddi^ are 

very active right on the region separating the gyres, why don't they transport more 

vorticity across the boundary m the no-sHp calculation? The ratio of fluxes similar 

to a Nusselt number used here demonstrates that these eddi^ are more effective at 

mixing vorticity across mean streamhnes than the western boundary variabihty, but 

why? The last chapter of a dissertation is usuaUy an opening for many new ideas, 

and that is certainly true here. 

The exKtence of the smuous mod^ prevents the onset of mertial domination quite 

effectively in the multiple gyre calculations. However, it seems that the inertial domi- 

nation eventually does occur. Because the single-gyre reaches an inertially-dominated 

state at a much lower RBynolds number than a multipl^gyre calculation, and because 

there is httle or no mter-gyre flux to contend with in the noshp calculation anyway, 

the single-gyre model is an exceUent model to study the dynamics of inertial domi- 

nation with less computational expense and comphcation. This is true for the time 

being given the substantial computational demands of getting.inertiaUy-dominated 

multiple gyre calculation Uke the one m figure 4-37a. Studies involvmg inertial dom- 

ination including baroclinic effects and effects of topography for example, would be 

significantly easier in the single-gyre. 
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5.4.6    The Three-Dimensional Problem 

Effects of Depth Variation 

As mentioned above, aUowing for layer outcropping in tliis model could introduce a 

new source of vorticity and change the interaction with the bottom topography or 

allow a layer to avoid wind forcing. However, simpler effects of depth variation are 

possibly more important in the real ocean. 

Using a reduced-gravity model for calculations similar to those found here, the 

speed of wave propagation and the frequencies of the basin modes would change. 

This would allow for tuning toward or away from the frequencies of the instabihties. 

Changing the wave speed in a multipl^gyre calculation would also affect the eddies' 

abmty to travel against or across the jet. Ako, as the radius of deformation changes 

the typical scale of eddies formed, presumably this would have an important impact 

on their abiHty to interact with the frictional sublayer. 

Cessi and Primeau (2001), Primeau (2002), and Lacasce and Pedlosky (2002) have 

all found profound differences in the behavior of barocUnic basm modes and Rossby 

waves when compared to the behavior of barotropic wav^. The dissipative selection 

of low-frequency modes propc^ed by Cessi and Primeau (2001), and the resonances 

of low-frequency modes proposed by Pruneau (2002) would be very interring to 

study in the relatively invtecid hmits explored here. These modes are quite Ukely 

to be umtable in this model, and therefore would add low-frequency variabihty of 

a different sort. In particular, what would the effect be on the already temporaUy- 

chaotic osciUations which possess intrinsic low-frequency variability 

A primary inadequacy of the model used here is that it has no vertical structure. 

Although using a quasi-geostrophic layer model would not ease the burden of ed- 

dies having to flux the vorticity to the boundary, it would introduce new sources of 

eddies through baroclinic instabihty, potentially affecting the eddies formation and 

efficiency Another significant effect of the introduction of vertical structure would 
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be the requirement of satisfaction of a buoyancy budget (or salt and heat for that 

matter). The uniform density of the model used here require only a satMaction 

of mass conservation. Radko and Marshall (2002) and Marshall et al. (2002) have 

demonstrated that eddies may play a significant role in the distribution of heat as 

well as vorticity. What happens when if the requirements of fulfiUing the heat budget 

are at odds with fulfiDing the vorticity budget? 

5.4.7    Eddy Parameterization 

FinaUy, some of the results of this thesis could be useful for development of eddy 

parameterization. 

Homoparic SolutioiK 

The existence of the homoparic solutions to the singl^gyre calculation indicates that 

m this instance, the eddy parameterization worked very well. That is, if two calcula- 

tions with different Re(int) and Re(bdy) have ahnost the same tune-mean because the 

eddies and the friction have changed in complementary ways, that is a very successful 

eddy parameterization! However, there were no obvious clues as to how to choose the 

value of Re(int) and Re(bdy). It seems that a much larger swath of parameter space 

would need to be explored to find thfe relation and understand it. At the pr^ent 

time computers are not fast enough to run the hundreds of calculations and at the 

higher r^olutions needed to more fully map the functional relationship. The problem 

is one famihar to number theorists, many different sequences of small numbers seem 

the same at first. 

The homoparic equiHbria also present an oppori;unity for an interesting experi- 

ment. Since the time-mean of these calculations is very similar, they repr^ent an 

effective parameterization of the mean effects of eddies. However, I have noted that 

the spin-up times of the different pair members is quite different; the member with 

larger Re(int) is slower to spin-up. The experiment, then, is to comparatively study 
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the response of these pair members to tim^dependent forcing. If the eddi^ are slower 

to respond than the Mnear viscosity, just what temporal forcmg do the r^olved ed- 

dies not resolve? Is one solution or the other more prone to state transitions under 

variable forcing? 

The Residual Mean Circulation 

Alan Plmnb has suggested that perhaps a cleaner physical interpretation of eddy 

phenomena such as the homoparic solutions hes in choosing another definition of eddy. 

As eddies are defined here, they mbc both along and across the vorticity gradients. 

By redefining the 'mean' about which the eddies are perturbatiom to include the 

along-gradient portion of what is now eddy flux, it is possible that one could be much 

more precise about the effects of the eddies. 

One particularly promising idea is to redefine the mmn so that the eddy fluxes 

are hy defimtion down the mean gradient. This involves wrapping aU of the skew 

components of WC into what is considered the mean flow. The remaining, or residual, 

eddy fluxes can then be studied by the distribution of a scalar quantity «: FC = 

-Kix,y)VC. Since the model here used just such a form for the frictional fluxes, it 

would be quite mter^ing to be able to durectly compare the resulting eddy fluxes 

from a change in the viscosity. 

In some physical systems, using a well-chosen residual mean formulation actually 

results in a closed set of equations which can be solved without ever having knowledge 

of the Euleriaa mean. However, this usually involves redefining mean to incorporate 

some features of the buoyancy budget, not to ehmmate the skew fluxes as described in 

the preceding paragraph. In the homogeneous model, there is no buoyancy budget and 

at the present time, it is not clear how to formulate a clt^ed residual mean formulation 

which ehminates the skew fluxes from the Reynolds vorticity flux. Thus, the r^idual 

meaa formulation as currently miderstood would be only a diagnostic calculation, not 

a closed system of equations which could be solved without knowledge of the Eulerian 
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mean. 

5.5    Final Remarks 

This dissertation has explored mechaaisms by which closed interior streamhnes can be 

constantly forced, yet separated from the area where vorticity is ultimately removed 

from the basin. I hope that it has helped resolve the long-standing puzzle of how the 

circulation strength can be controlled when much of the circulation receives an input 

of vorticity but no obvious output. In this case, an eddy flux of vorticity plays the 

critical role of communicating the vorticity between these isolated regions and the 

regions where the vorticity is ultimately removed. It has been clearly demoi^trated 

here that both the eddy flux and the ultimate removal are critical, and without either 

one the vorticity is trapped m the basin or m an interior streamline and the circulation 

strength increase vastly beyond what is beHevable for a model of the real ocean. 

Although the specific model used here is barotropic and employs a boundary- 

enhanced viscosity as a parameterization of the mechanism for removal of vorticity, it 

has direct relevance to an equivalent barotropic or upper moving layer of a barocUnic 

fluid with ^entially any mechanism for vorticity removal. I have demonstrated that 

the mean flow need not enter this region of vorticity removal, so processes Umited to 

a narrow region outside of the main flow are acceptable. Furthermore, this approach 

has allowed a resolution to many of the technical issu^ surrounding the traditional 

models, such as the difficulty of reattaching Chaxney's boundary layer to the interior 

flow and the mechanism of westward intensification with a relatively inviscid basin 

interior. 

Along the way, the model had enough interesting behaviors to warrant its study 

regardl^ of whether it truly d^crib^ what controls the circulation strength in the 

real ocean. The counter-rotating gyres, presence of basin modes, and development of 

temporal complexity with increasing nonlinearity all present stimulating ideas that 
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are likely to have analogue or application in the real ocean. 

I have certainly enjoyed and learned from doing this research and recording it 

here. I hope that you have enjoyed and learned from reading it. 
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Appendix A 

Properties of the Chebyshev 

Polynomials 

A.l    Definitions and Basic Identities 

The Chebyshev Polynomials may be defined as 

r„(a;) =cos[ncos~-^(s)]. (_^ j^ 

From this definition, the first few polynomials are easily determined. 

nix) = 1, 

Ti{x) = X, 

T^ix) = 2a?-I, 

nix) = 4x^-Zx, 

nix) = Sar^-Ss^ + l, 

Tn+iix)     =     2xTn(x)-n_^{x). 
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The orthogonality relation is 

/_ 

1 Tiix)Tjix) 
-1   Vl-x^ 

The zeros of Tn{x) are located at 

T^{x) = 0-,   x = 

dx = 

0       ifi^j 

TT      iii = j = 0 

(A.2) 

cos 
ir(fc-l) 

fe = l,2,..., n. (A.3) 

When the polynomials are summed over the points where they are zero, they obey a 

discrete orthogonality relation. If xu axe the m zeros of r^(a;), and ij < m, then 

'ETiixk)Tjixk) = 

The extrema of r„(a;) are located at 

0        ifi#j 

m/2   i{i = j^O  . 

m      if i = j = 0 

(A.4) 

\Tnix)\\ = l-^   :c = ccs[f]   k = 0,1,2,...,n. (A.5) 

When the polynomials are summed over the points where they are extremal, they obey 

a discrete orthogonaUty relation. If Xk are the m extrema of r«(a;), and ij < m, 

then 

ETiMTjixk) = 
k=0 

0 ifi^j 

^     ifi = i#0 . 

m+1   i{i = j=zO 

(A.6) 

For the purposes of the expansion, consider a basin where the boundaries He at 

X = ±1 andy = ±1.   To ensure that the boundary conditions are satisfied, the 
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following identities are useful. 

(fop 

Tni±l)   = 

Tn{±l)   = 

(dblf. 

(±if+p n -—1 

(A.7) 

(A.8) 

A.2    Chebyshev Polynomial Expansion to Approx- 

imate Functions 

The relevance of the Chebyshev polynomials lies in using the orthogonality relations 

above to construct a seri^ expansion. To approximate a function, f{x), we assume 

a series expansion of the form 

m = ■N-l 

53 CkTkix) 
Lfc=o 2' (A.9) 

In this th^is, the method of coUocation is used to determine the coiMants c^. This 

means that N points are chosen in x where equation A.9 will hold exactly. It is clear 

from equations A.6 and A.4 that the coUocation points should be chosen to be the 

points where the Chebyshev polynomials are zero or extremal. 

With the zeros as the coUocation points, then the relation becomes 

JV 

I^ /1 cos 
Lfe=l 

'<k - ir 
N cos 

Ti(fc -1) 
N (A.10) 

Thus, given the values of / at the zeros of the Chebyshev polynomials, only a cosine 

transform is needed to determine the coefficients. In this thesis, however, a slightly 

different version is more useful because we would Uke the endpoints a; = ±1 to be 

coUocation points. 

Choosing the coUocation points to be at the extrema of the Chebyshev polyno- 

mials, the boundaries are included in the grid, so boundary conditions are easily 
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interpreted and verified. This grid is called the Gau^-Lobatto grid. All of the 

ChebysheY calculations in this th^fe were done on a GaiKS-Lobatto grid. On the 

Gauss-Lobatto grid, the coefficients may be determined leing an alternate form of 

the cosine transform. 

fk = 
N 

cos 
wjk 
N -^[/o+ (-!)%] (A.11) 

Note that the inverse of this transform is itself times 2/N, which follows from the 

equation A.4. Using this fact to convert to aad from the Chebyshev coefficients, 

/(%•) = % + (-iFf, 

/(%)i -   =   #(^^)-iFfi%(-X- 

(A.12) 

(A.13) 

In this th^is the cosine transform from equation A.11 was implemented using the 

fast Fourier transform, producing an efficient method of transforming back and forth 

from phyBical variables to Chebyshev coefficients. 

It is possible to calculate (-l)i^ for any N. Because of the heavy symmetry of 

cosine about 0 to TT, the following appUes 

fi^j)   =   %■ + (-!) 

0    lik^N 

N   iik = N 
jCff 

Ck    =     < 

^ yi^)j, i£k=N 

(A.14) 

(A.15) 

(A.16) 

Using these results, the transformation to physical space to perform operations is 

easy, but it will often be helpful to perform operation in Chebyshev space as well. 
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Most importantly, the derivative of a Cheb^hev expansion can be calculated 

£,m = to^'u-)-^, (A.17) 
«Ei-aSi   =   2nat'\n>l, (A.18) 

oo 

4''   =   2       £      pa?-«. (A.19) 
P=n+l,p+n=sdd 

The truncation of these equations is carried out by setting a^'"^) = 0 for p > iV. 

This is equivalent to setting 4«) = 0 forn > iV in the recursion equation. This 

truncation represents the degree of approximation with differentiation. An Nth degree 

polynomial approximation of the original function is reduced to an {N - l)th degree 

approximation of the function derivative. 

The indicial equation A.18 for the derivative of a function given that function was 

used to generate aU of the derivatives in the Chebyshev polynomial models in this 

thesis. This equation was also used to integrate spatially when necessary. 

A.3    2-dimensional Expansions 

As the models in this thesis are two-dunensional, the Chebyshev transformation is on 

a function of the form f{x, y). This is effected by transformmg along one coordinate 

first, and then trai^forming along the other. 

fi^^ y)=      H Ciivm^) - ^ = E oMUxl (A.20) 
i=o ^        ^^ 
M   N M N 

/(^> y)=      E E Ci,T,{xmy) - E mzff - E Uy)^ + ^,  (A.21) 

M' N ' 

= E E <^ikTj{x)Tu{y). (A.22) 

The notation of a prime foUowing the sum (E') is used to denote a sum over the 

series followed by subtraction of half of the first term in the series. This expansion 
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and its inverse are easily accomplished by taking the Chebyshev expansion along 

one coordinate using the first expansion and then expanding the resulting Chebyshev 

coefficients along the other coordinate. 

A.4    Boundary Conditions 

In the Chebyshev expansion, the boundary conditions can take a compUcated form. 

This section pr^ents the iouns used in this thesis. 

If the basin boundaries He at a; = ±1 and t/ = ±1, then for a single-gyre calcula- 

tion, n<^normal-flow is one boundary condition. This means that the gradient of the 

streamfunction along the boundary must vanish. Using the formula derived for the 

values at the boundari^ (equation A.8), we can find the boundary conditions on the 

coefficients ^jk of a Cheb^hev expansion of the streamfimction ip{x, y). 

M' N ' 

^{x. I/) = E E -^jkTMniy). (A.23) 
i=o fc=o 

M' N ' 

o = EE^ife^r,W(±i)*, (A.24) 

i^a-i)k,x - ip(j+i)k^ = 2jCjk,      V : j e {1,2,..., M}. (A.25) 

Since the Tj{x) are orthogonal, 

0 = E ^iM(±i)*, 
*=o V:j€{l,2,...,M}. (A.26) 

^y-i)fc,s - i'(j+i)k,x = 2j^jfe, 

Likewise for the eastern and western boundaries, 

M' 

J=o V:fc6{l,2,...,iV}. (A.27) 

^i(fe-i).i/ - i'Hk+i^y = ^kipjk, 
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There are four more boundary conditions to prevent outflow at the corners of the 

basin, namely, that the value of the streamfunction should be equal on aU four walls. 

There is an alternate method for settmg the no-normal-flow condition. Since the 

tangential derivative along the boundary is supposed to vanish, we can integrate 

around the boundary. Clearly, we see that the value of ^ will be constant along the 

boundary. This constant may vary in time (if time dependence is important), but for 

the fixed-depth model usai in this thesfe this is not physically important. To set the 

boimdary values to zero, 

' M I M' N 

0   =   ET.i^Jki±iyniy), (A.28) 
3=0 k=Q ' 

M' N ' 

0   =   E E ^i*r,(a:)(±lf. (A.29) 
i=ofc=o 

Again, we may use the orthogonality of the polynomials to insist that one of the two 

sums vanishes term by term. 

M' 

0 = £^,-^(±l)i,      V:fc€{0,l,...,iV}. 
i=o 

0=£^,fc(±lf,      V:ie{0,l,...,M}. I 
fa=0 

The other boundary conditions have a similar f< 

(A.30) 

(A.31) 

orm. 

No-slip boundary conditions are set by 

M' 

^ = ±1 -^ 0 = E J%u{±lf,      V : fc e {0,1,... ,iV}. 

JV' 

y = ±l-^Q = Y,k%,{±lf,      V:i€{0,l,...,M}. 
A:=0 
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No-str^s boundary conditions are set by 

X 

3=0 ^ 

fc=0 ^ 

V:fee{0,l,...,iV}.     (A.34) 

V:i€{0,l,...,M}.     (A.35) 
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Appendix B 

The Steady-State Numerical 

Models 

The steady-state calculations in this th^is were generated using one of two numerical 

modek. This appendix briefly describes these models. 

B.l    Newton's Method 

The method used to solve for steady-state solutions is Newton's method. It consists 

of solution of a function by iteratively solving linear approximations. 

B.1.1    One-Dimensional Newton's Method 

In one dimension, Newton's method is very simple and converges quadratically when 

the root is nearby. 

Suppose F{y) = 0 is the equation to solve and y is the solution.   Supps^e an 

initial guess x is chosen. An estimate of y using x and a Taylor series expansion is 

generated. 

Piv)   =   0, (B.l) 
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Fiy)   =   F{x)+F'{x){y-x) + F"{y){y-xf + ..., 

-F{x) 
y   "   "^^-Fcif- (B-2) 

In Newton's method this procedure is performed iteratively. That K, calculate an 

estimate of y using equation B.2 from an initial guess a;. Then, use the estimate of 

y as the new guess, and iterate. The accuracy at each step is alwa^ calculated as 

F{x). With iteration, this can be made quite small. 

There are two subtleti^ of Newton's method in one dimension. Fii^, there is no 

way of determining the number of roots during solution. If there is at least one root 

and the ftuiction is smooth, Newton's method will probably find it, but if there is 

more than one root, the convergence will be determined by the initial gu^. Usually, 

if one knows something about the roots, the initial guess^ can be chosen close to 

them, thus increasmg the hkeUhood of convergence to the desked root. Second, it is 

possible that the derivative, F'{x), will vanish during the course of the solution. In 

this case, one perturbs the guess sUghtly and tries the iteration again. 

B.1.2    Multi-dimensional Newton's Method 

In a very similar method to that of the one dimensional Newton's method, we can 

iteratively solve a multi-dimensional nonHnear set of equations. This is achieved via^ 

my = 0, 

-^4 = ^ils + Pidl iVj - Xj) + Fijkl^ {yj - Xj){yk -Xk) + ..., 

^Here I am iMng Einstein summation to imply that repeated indices are summed over all the 
dimensions present 
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The iterative procedure involves the solution of a matrix equation involving the Ja- 

cobian matrix Fij. The solution is 

yi~Xj-iFij{x))-^Fiix). (B.3) 

There are many subtleties in the multi-dimensional case. A few of them relate directly 

to the matrix inversion. Of course, because we have to solve the matrix equation, 

Fi must be a vector of the same dimension as x^. That is, we must have as many 

equations as unknowns. Also, the equations must be hnearly independent, which is 

equivalent to saying that the Jacobian must be nonsingular at every x the iteration 

strikes. The latter k amehorated by noting that if the Jacobian turns out to be 

singular, it is likely to be only a local effect, so perturbing the x a bit usually recovers 

invertabiUty. 

Even if the matrix inversion works, there is another subtlety to the multi-dimensional 

Newton's method: lack of guaranteed convergence. In the one dimensional case, as 

long as F decreased, the iteration proceeds toward a root. In the multi-dimensional 

case, it is not so simple. It is very easy to become trapped in a local minima. For 

this reason, the models in this thesis employ a backtracking routine to the Newton's 

method. This routine ensures that if the Newton's method step doesn't decrease 

FiFi, then only a percentage of that step is taken. The percentage is shrunk until 

FiFi decreases or a minimum step length is reached. If the minimum step length is 

reached, then it is assumed that the solution is trapped in a local minimum, and the 

fuU step length is used. The benefit of this kind of backtracking is that it is numer- 

ically inexpensive (relative to the matrix equation solution for a full Newton's step) 

and it may increase the speed of convergence when far away from a solution. It also 

has the added bonus of discovering when the solver is trapped in a local minimum. 

This method is essentially that of the Newton's Method with backtracking from 

the numrec. Although the code is not directly implemented, I have done httle to 

change the methodological ^sence. 
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B.1.3    Evaluation of the Jacobian 

The Jacobian Fij is ^timated using a simple forward difference scheme given in Press 

et al. (1992). 

^ijlx ^ 
■ i\x+dx -m 

dxj (B.4) 

The perturbation dx is tangent to the jth component of x. A very small fraction 

of the f" component of x is used as the magnitude \dx\i for each j. This is a 

dependable method for determimng the Jacobian, but it is expensive. It requires 

that the function F be caUed N^ + 1 times for each determination of the Jacobian, 

where JV is the number of degree of freedom of x. 

B.2    Finite Difference Model 

The finite difference numerical model was constructed from the homogeneous ocean 

model's partial differential equation. 

F = -SjJii;, 0 - t^WE - Vi [6s iti - e«#.fc)] + V.^O- (B.5) 

The discretization was carried out by finite difference on an irregular grid. The 

gradients were calculated as an average of the differences to either direction and the 

second derivatives were taken as centered difference. As an example, the ith grid 

point in x would have derivatives of the following form 

dx 

dx^ 

2ixi - 2i_i) 2(a;i+i - Xi) 

¥(gi) - ifjxi-i)     i;{xi+i) - i^jxi) 
,      (Xi - Xi^i) (Xi+i - Xi) {Xi+i - Xi-i) 

(B.6) 

(B.7) 

This method makes the second derivatives a lower order approximation than the first 

derivatives, it allows the botmdary conditions to be set more easily. 
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The grid was generated using 

2-. ^ tan [npiii - eo)/2] - tan M-eo)/2] 
'     tan [7rp(l - $o)/2] - tan M-eo)/2]" (^-^J 

This formula gives a smoothly-varying grid of Xi from 0 to 1 from a uniform grid of ^i 

between 0 and 1. Most of the grid points cluster near Co and a variable density of grid 

points is governed by p, a parameter between 0 and 1. The calculations presented in 

the thesis were made with values of p and ^o that were approximately 0.65 and 0.1, 

respectively for a grid with 35 grid points in each direction. 

The boundary conditions were implemented by defining ghost cells outside of the 

domain. The differentiation was then carried out to the edge of the domain, and 

these ghost cells assured the satisfaction of the boundary conditions there. For the 

problem with bottom friction only, the ghost cells were needed only at the boundary 

to set the value of ip to zero to ensure no-normal-flow. 

For the problems with lateral friction, here is an example of how the ghost cells 

were set. The ghc^t ceU was located at -dx, where dx was the location of the first 

interior grid point. For no-sHp boundary conditions at the western boundary {x = 0), 

the value of i,{-dx) was set to 0. For shp boundary conditiom, the value of i>{-dx) 

was set to ip(dx). 

The Newton's method minimized the value of E{Fixi,yjf) where the sum is 

taken over every interior grid point. The boundary conditions on ^ were set before 

F was evaluated. 

B.3    Chebyshev Pseudo-Spectral Model 

The finite difference numerical model was constructed from the homogeneous ocean 

model's partial differential equations which was discretized using the Chebyshev trai^ 

hnm discussed in appendix A. The discretization r^ulted in the following equations 
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to solve. 

+C(WB) - Vi [Ss (Cii^li - e,ifcC(^),fe)] + ViSltV^Ci-^li. (B.9) 

The Chebj^hev tranforai of the function / is written as C{f), and 0"^/) is the 

inverse transform. 

Since the taJdng the derivative lowers the order of the Chebyshev expansion, the 

lateral friction term in the field equations was zero for the four highest-order Cheby- 

shev polynomials in each direction. For th^e remaining degrees of freedom, the 

boundary conditions were used to set their value. 

It is critical to evaluate the low^t modes of the field equations for these models, 

because the singl^gyre forcmg projects onto a single Chebyshev mode. 

The Gau^-Lobatto grid was used, the basin boundaries were included as grid 

points for the collocation. This made the unplementation of the boundary conditions 

quite easy The boundary conditions were set as d^cribed m the previous appendbc, 

and sHp or no-sMp or mixed boundary conditions were implemented without difficulty 

If the Chebyshev expansion had N polynomials in y and M polynomials in x, then 

there are NM degrees of freedom. The field equations represented (JV - 4)(M - 4) 

equations. There were 2 boundary conditions in each direction on each boundary so 

that is 4iV-|-4M boundary conditions. There are therefore (iV-4)(M-4)-|-4iV+4M = 

NM + 16 total equations. Therefore, 16 of the equations were redundant, which 

is clearly because the boundary conditions at the comera are evaluated along the 

boundary in each direction. Removing th^e redundant equations, there are NM 

equations in NM imknowns. 

The Newton's method proceeded as follows. An initial guess for ^ was proposed. 

The boundary conditions were used to set the lowest four Cheb^hev mod^ in each 

direction of #. Then the (JV - 4)(M - 4) field equation were minhnized using the 
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Location 
Fig. 1-la 
Fig. 1-lb 
Fig. 1-lc 
Fig. 1-ld 
Fig. l-2d 
Fig. l-2d 
Fig. l-2d 
Fig. l-2d 

0.04 
0.08 
0.1 
0 

0.05 
0.0625 

0.08125 

SM jint) 

0.05 
0.05 
0.05 
0.05 

SM (hdy) 

0.05 
0.05 
0.05 
0.05 

0.04 
0.04 
0.04 
0.04 

0 

L. Ly Resolution 
34x35 (NFD) 
34x35 (NFD] 
34x35 (NFD) 
34x35 (NFD) 

49x49 (C) 
49x49 (C) 
49x49 (C) 
49x49 (C) 

Table B.l: This table presents the paxameter settinp for all of the steady-state 

ottrrf K'T"*"'f f" di^rtation. Evolution is given in number of ^ 
pmnts (Chebyshev mod^) in y by number in z.  NFD is a nonuniform grid fiS e 

s SOTB 3 " " '"*"" ^•'-   ^ " ^^^^^^^^ P°^5-°--l -P-?- as n 

Chebyshev coefficients of ^ for modes greater than 4. Each time a new version of the 

Chebyshev coefficients waa generated by the Newton's method, the lowest 4 modes 

of the Chebyshev coefficients were calculated from the boundary conditions. 

The solutions to the steady-state problem are relatively smooth, so the Chebyshev 

coefficients should rapidly decrease with increasing mode. Therefore, the metric for 

convergence of G might be chosen to decrease with mode number, so that convergence 

to lower modes was deemed more important thaa higher ones. Therefore sometimes 

the Newton's method was i^ed to minimize E(G(n, m)/(nm))2 where n and m are 

the mode number aaid the sum is taken over all modes where either n or m is greater 

than 4. In practice, minimizing E((?(n, m)f yielded comparable performance so long 

as the solution was adequately resolved, so this was used instead. 

The advantage of minimizing the Chebyshev transform of the field equations rather 

than the value of the function at grid points within the spaoe was that the nmnber 

of Fourier transforms required to evaluate the Jacobian was minimized. However, it 

is likely that the convergence might be more rapid m a model which minimized the 

values in physical space. 
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Appendix C 

The Time-Dependent Numerical 

Model 

The majority of the modeHng in the thesis was calculated using a time-integrating 

numerical model specifically for the purpose. This appendix describes the model. 

The nonlinear terms and the variable viscosity friction terms were evaluated by 

pseudo-spectral coUocation. A major difficulty with maay numerical models, espe- 

cially those employing a hyper-viscosity, is that the number of derivatives required 

to evaluate th^e terms is unreahstically large. Therefore, the errors in the lower- 

derivative terms can end up r^embling higher-order derivatives in practice. Because 

the experimental design here required accurate evaluation of the highest derivatives, 

some care had to be taken with the numerical approach. 

C.l    Implementing The Field Equations 

The field equation for this model was the homogeneom model vorticity equation. It 

was solved in a four-stage proems. 

The time integration was done by a second-order Adams-Bashforth method for 

all terms except the lateral friction. For stability, it was necessary to evaluate the 

283 ft: 

lIS 



rs%-»Sja8t»issg»y.--'- ,mr-^.^^y-^^r- 

friction in two parts, the firat was the frictional term with constant viscosity equal 

to the maximum found in the basin. This term was evaluated impMcitly with a 

modified Crank-Nicholson scheme. The corrections to the constant viscreity were 

evaluated exphcitly by Adams-Bashforth. This use of an imphcit integration method 

in this mauner is recommended by Gottheb and Orszag (1981) and Orszag and Is- 

raeh (1974) for solving variable-viscosity problems with Chebyshev polynomials. The 

choice of Adams-Bashforth and modified Crank-Nicholson schemes was recommended 

in Canute et al. (1988). 

Th^e methods result in the following time-stepping scheme, 

[l-ddtm^iSl,)V^]Coit + dt)   =   [l + il-d)dtmBa^{5l,)V^]at)-sm{7cy) 

+dt ZX{t)     X{t - dt)] 
(C.I) 2               2 

(t + dt)   =   Coit + dt) + CH (C.2) 

(t + dt)   =   V^^it + dt), (C.3) 

6   =   0.50C )01. 

The explicit terms are given by 

ax 

dy 

{51 - mB^{6%)) —C(T) -h CW^^(r) - ^(r) 

(4 - max(4)) |-C(T) - C(r)^i^(r) %C(r)      (C.4) 

All of the above equations were solved while the variabte were expanded in Chebyshev 

polynomials. The differentiation was done ming the properties of the Cheb^hev 

polynomial expansion. Only the products in the exphcit terms for the advective 

terms and the variable viscosity friction terms were calculated on the coUocation 

points of the Chebyshev polynomial. Once the products were formed, the r^ults 

were projected back into Chebyshev polynomial. 
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C.2    Inversion of Poisson and Helmholtz Equations 

In each time step, the Hehnholtz operator on the left-hand side of equation C.l had 

to be inverted to find the new Co, and the Poisson operator in equation C.3 had to 

be inverted to find the new ^. The inverses of these operators were determined at 

the beginning of each calculation, and the inversion was then performed by matrix 

multiphcation. 

If the Chebyshev coefficients are expressed in matrix format, then all hnear opera- 

tions can be performed by matrix multiphcation. In this model, the columns represent 

the n mode and the rows represented the m mode. Thus, the Hehnholtz equation 

could be repr^ented as 

{l + XV^)C   =   R 

[C]+A 
52 

dy^ [C] + [C] dx^ = im 

(C.5) 

(C.6) 

Brackets denote the matrix representation of the Cheb^hev coefiicients of the vari- 

ables or matrbc representation of the operators acting on the matrices. Note that 

left-multiphcation of a Chebyshev expansion operate on the y modes of the Cheby- 

shev expansion while right-multiphcation operates on the a; modes. 

The differential operators include the shp boundary condition (C = 0). Because 

the differentiation of Chebyshev expansion leaves the highest mod^ zero, the matrix 

representation of differentiation will be singular. Including the boundary condition 

makes them non-singular. 

To solve this equation, at the beginning of the calculation, the difference matric^ 

are diagonahzed. This is allowed because they axe non-singular, so long as the bound- 

ary conditions are included. They axe also relatively weU-conditioned, so a standard 
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eigenvector pactege from the Compaq dxml library was used. 

my)] imwivT' = [^] 
mmm][vix)]-^ = [^] 

[V{y)] my)]-miV{x)][Vix)]-^ + X i[Viy)][X{y)Wiy)]-m + KWix)mx)][Vix)]-^) 

= iViy)][Viy)nRWix)][Vix)]-^ 

The matricra [F(a;)], and [F(y)] have the eigenvectors as columm and the matrices 

[A(a;)], and [X{y)] are diagonal matrices with the eigenvalues of the differentiation 

operators as the diagonal entries. By multiplying through by some of the matrices, a 

form of this equation which is diagonal can be found. 

^^^^JWl^%«     l + A([A(y)U + [A(y)U) ^^.7) 

Subscripts denote column and row indices. Once [Viy)]-^R][Vix)] is calculated, it 

is easy to solve for [Viy)]-^CW{x% which can be converted back to C- Therefore, 

the Hehnholtz equation can be solved m four matrix multiplications per time step. 

The Poisson equation can be solved similarly. K the boundary condition of no- 

normal flow (^ = 0) is imposed, the eigenvectors and eigenvalue of the differentiation 

operators are the same as those in used in the Hehnholtz equation. 

liviyrmvix)]i^=t^ff^Jf^- (C.8) 
innt [Xiy)]nn + [Xiy)]mm ^     ^ 

Noting that the right-hand side of the Poisson equation fe the same as the unknown 

in the Hehnholtz equation, two matrix multipMcatiom per time-step can be saved by 

solving th^e equations simultaneously. 

Because the errors in matrix multipUcation are cumulative, and the matric^ mul- 

tiphed here are large, the accuracy of these methods was checked at the beginning of 

each calculation by comparing the results from a forward and inverse calculation of 
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the Helmholtz and Poisson operators. The errors were always less than one part in 

ten thot^and. 

The speed of solution of the entire method is governed by the number of matrix 

multipHcations involved in solving the Hehnholtz and Poisson equations. The method 

used results in six matrix multipUcations per time step. There are three known 

methods to increase the speed of this step. 

First, because differentiating the Chebyshev polynomials twice doesn't couple the 

even and odd Chebyshev modes, they can be treated separately Although this in- 

creases the number of matrix multiphcations, the size of each matrix in the multipM- 

cation is reduced. This r^ults in a net gain in number of operations. 

Second, instead of using Chebyshev expansions in both directions, a Fourier sine 

seri^ can be used to expand in the north-south direction because only sHp bound- 

ary conditions are used there. Fourier series are not suitable for noshp boundary 

conditions. Because the Fourier mod^ are the eigenmodes of differentiation, this 

reduces the number of matrix multipHcations by half. However, the uniform coUoca- 

tion points in a Fourier representation are iU-suited for the single-gyre calculations 

performed here. Uniform collocation would, on the other hand, probably have been 

preferable for the double and two-gyre calculations. 

Third, there is a method due to Haidvogel Haidvogel (1976), which reorganizes 

the equation for solution of the Poisson and Hehnholtz equations which allows the 

number of matrix multipHcations to be halved as weU. This method was not used 

because it was more difficult to implement and check numerically. 

C.3    Setting the Boundary Conditions 

The boundary condition of impermeabihty (^ = 0 on boundary) was implemented 

within the operator for mversion of the Poisson equation. The Helmholtz inversion 

automatically set a slip boundary condition (Co = 0 on boundary). The condition of 
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no-slip was then found by adjustment with a homogeneous solution to the Helmholtz 

operator with inhomogeneous boundary conditions {CH # 0 on eastern and western 

boundari^, [I-edtm^{S%)V^]^jj = 0). At eadi tim^step, CH was constructed 

by adding together members from a set of homogeneous solutions determined at the 

beginning of the calculation. The size of this set was precisely large enough to ensure 

that the velocity vanished at every collocation point along the eastern and western 

boundari^. This method for setting the boundary conditions is e^entially the one 

used by Haidvogel (1976). 

C.4    Spinning up the Model 

The calculations axe spun-up in such a way as to diminish the excitation of basin 

modes by impulsive initial conditior^. To do this, the forcing was not apphed impul- 

sively, rather it was slowly increased Imearly from zero to its final value. A bottom 

friction was apphed over the same time period. The ramp-up period took place over 

a time-scale long when compared to the appKed bottom frictional decay time. Imple- 

mentation of this procedure significantly decreased the time for statisticaUy steady 

solutions to be reached, and presumably made the calculations with intrinsic instabil- 

ity closer to the state reached after longer integration in time with impulsive forcing. 

C.5    Sources of Numerical Error 

The numerical method used was chosen to aUow for sufficiently accurate differenti- 

ation to ensure that the variable viscosity chosen was accurately repr^ented. The 

numerical errors associated with this method are unHke those pr^ent in a finite- 

difference calculation and so warrant mention. There are four primary categories of 

error in this methodology: precMon truncation, spectral truncation, ahasing, and 

time-step errors. 
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The spectral truncation errors, errors due to insufficient order of Chebyshev poly- 

nomials is small. This can be verified by the spectral decay of the polynomial coeffi- 

cients (they should exponentially decrease after sufficient resolution is reached). 

The aliasing errors are errors due to the method of collocation. The products for 

the expHcit terms (both frictional and advective) should properly have smaller spatial 

scale than the functions being multipUed. Because the spectrum of Chebyshev poly- 

nomials does not resolve these smaller scal^, the energy in these scales is erroneously 

placed (aliased) into larger scale polynomials. Because the polynomial coefficients 

decay exponentially, however, these effects wiU also decay exponentiaUy with resolu- 

tion. The size of these errors can be estimated from the spectrum, and they are less 

than 1% in all of the calculations. However, since the Chebyshev polynomials are 

global functions, these errors are present in regions where there k little else going on. 

These aUasing errors produce the grid-scale errors present in the southwest region of 

figure 2-6d. 

The numerical truncation errors are errors due to the limited digits of precision 

of the machine used. The calculations were done in double precision to minimize 

th^e errors. However, because the inversion of the Hehnholtz and Poisson operators 

required matrix multiphcation, these errors are compounded and are Ukely to be on 

the order of 0.01%. 

Figure C-1 shows the spectral decay of the Chebyshev coefficients of the time- 

mean vorticity in a number of calculations. The vorticity is not as difficult to resolve 

as the frictional term, and the time-mean is probably also easier to r^olve than the 

snapshot vorticity field. However, this is a fair representation of the magnitude of 

aliasing, truncation, and precision errors. 

Ahasing errors are apparent in figure ai near the tail of the distributions, where 

the Chebyshev coefficients begin to rise. The small magnitude of these errors is 

apparent, however. 

Truncation errors are evident in figure C-1 as well. If more modes were included, 
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Figure C-1: Base 10 logarithm of the absolute value of Chebyshev coefficients in y 
(averaged over x modes and time) and x (averaged over y mod^ and time) versus 
Chebyshev polynonual mode number for the relative vorticity field of time-dependent 
S ftll,' ft'l^^^ ^^^ Re(bdy)=3, Re(int)=3, (c) Re(bdy)=5, Re(int)=5, 
id) Kelbdy)=l, ite(mt)=5 calculations. Also plotted are a straight Hn^ at a fac- 
tor tunes the polynomial mode number for comparison. Shnilar proof of spectral 
convergence is given in figure 3-5. 

the spectral decay would continue to even smaller errors. 

FinaUy, precision errors are evident in figure C-la. The rapid changes in at the 

tail of the distribution show that the errors have readied the digital hmit of repr^en- 

tation for the double precision us«i. The 25 orders of magnitude separation between 

the largest mod^ and the smallest onra cm not be adequately represented at thfe 

precision. 

Programming the Chebyshev i^eudo-spectral calculation required enormous ad- 
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ditional effort over using a finite-difference calculation. The difficulty in calculation 

per grid point is also significant. However, because the Mctional tenns play such 

an important role in these models this extra effort is warranted. Calculations of the 

energy assipation of the mean flow using second-order accurate finite differences (on 

the same grid as used for Chebyshev coUocation) rather than Chebyshev expansion 

revealed that the energy dissipation rate was overestimated by the finite differences 

by 20% or more due to numerical error. This demonstrates the difficulty in evaluation 

of high-order derivative in. numerical models. 

The last, and likely most significant, intrimic source of error is in the method of 

time stepping. The time integration is only second-order accurate, and must use a 

fixed time step. Due to the qualitative changes in the solutions and the irregular 

resolution of the Chebyshev polynomials, the Courant numbers could not be calcu- 

lated in advance, but only during calculation. Thus, an initial guess of time-step was 

found empirically, and if required, the calculation was halted and restarted with a 

smaUer tim^step. In almost aU cases, the Courant number for the impHcitly calcu- 

lated part of the Motion was larger than one. Significant errors are Ukely due to the 

implicit time stepping scheme. However, as shown in chapters 2 and 3, the vorticity 

and energetics of the mean flow work out to within a few percent. Also, some of the 

calculations were performed a second tune with a time step reduced by a factor of 

flve and showed no noticeable difference with reduction of time step. 

There are also errors due to spatial resolution, even though the Chebyshev poly- 

nomial errors decay exponentiaUy. Figure C-2 compares the mean streamfunctions 

from three calculations with different rraolutions of the Re(bdy)=0.25, Re(int)=7 

calculation. Although these calculations are very similar, there are still differences. 

Because of the high interior Reynolds number and the large gradient in viscosity, this 

is a worst case in reolution errors for the single-gyre. Time-stepping errors as are 

Ukely to be large as weU because of the large gradient in viscosity. The multiple-gyre 

calculations were too expensive to perform more than once, but the errors there are 
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probably comparable to those in figure C-2 based on the spectral decay of the Cheby- 

shev coefficients. The sUp calculations has much weaker gradients and therefore are 

significantly better r^olved. 

A comparision of the errors in other quantiti^ from the calculations with 200x200, 

256x256, and 300x300 resolution B also helpM m ^timating the error. The time- 

means of total kuietic energy of the calculations are 68, 95, and 105, respectively. The 

kinetic energies of the mean flow are 14.6, 24.2, and 25.5 r^pectively. FinaUy, the 

maxima of the time-mean streamfunction are 2.0, 2.74, and 2.79, r^pectively. Thus, 

a worst case error ^timate yields about a 10% error in d^criptors of the mean flow. 

Also, the convergence of these numbers justifl^ the choice of 256x256 r^olution for 

most of the no-slip calculations. 

A comparison of errors from averaging different intervals is given in figure C-3. 

As in figure C-2, this is a particularly variable case, so it should be interpreted as a 

worst case scenario. The cas^ being compared are calculations of the Re(bdy)=0.25, 

Re(int)=5 case. The average is taken over times 10000 to 20000 and 20000 to 30000. 

The time average kinetic energies are 49 and 69 respectively, and the kinetic energies 

of the mean flow are 14 and 25. FinaUy, the marima of the time-mean streamfunction 

are 2.0 and 2.9 r^pectively. Thus, a worst case error estimate yields about a 40% 

error in descriptors of the mean flow. The majority of the difference are in the 

recirculation gyre, which is significantly stronger over the second interval. The vast 

majority of the calculations here were not as variable (see figure 3-11). Unfortunately, 

this error is intrinsic to the temporaUy chaotic calculation. The computer reources 

were not available to integrate th^e solution for much longer times. 
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Location (Fig.) 

1-3 
2-2 
2-2 

1-3, 2-2 
3-12, 3-13 

2-2 
2-2, 2-11 
3-3, 3-5 

2-2 
1-3, 2-2 

2-3, 3-3, 3-5 
3-23 

2-2, 2-5 
2-9, 3-1, 3-3 
3-5, 3-6, 4-4 

4-23 
3-15, 3-16 
3-27, 3-29 

2-2, 2-11 
2-2 
2-2 

1-3, 2-2, 
2-6, 2-9, 2-13 

3-10, 3-17, 3-23 
4-2, 4-8, 4-22 

2-2, 2-12 
2-2 

2-2, 2-12 
2-2 
2-12 

2-2, 2-3 
2-2, 2-11 

3-3, 3-5, 3-23 

2-13 

0.02 
0.02 
0.02 
0.02 
0.02 
0.02 

0.02 
0.02 

0.02 

0.02 

3-21 

3-19, 3-20 
3-24, 3-25 
3-24, 3-25 
3-24, 3-25 

0.02 
0.02 
0.02 
0.02 

0.02 

^M(mt) 

0.02 
0.02 
0.02 
0.02 
0.02 

0.013867 
0.013867 

0.013867 
0.013867 

0.011696 

0.011696 

0.011696 
0.011696 
0.011696 
0.011696 

0.02 
0.02 
0.02 
0.02 
0.02 
0.02 

0.02 
n/a 
n/a 
0.02 
0.02 
0.02 

0.010455 
0.010455 
0.010455 
0.010455 
0.010455 

0.01 
0.01 

0.009615 
0.04 

0.01 
0.011696 
0.011696 
0.011696 

SM {hdy) I 5, 
0.02 

0.031748 
0.025198 

0.02 
0.02 

0.031748 
0.025198 

0.02 

0.013867 

0.031748 

0.031748 

0.025198 
0.02 

0.013867 
0.011696 

0.031748 
0.025198 

0.02 
0.013867 
0.010455 
0.031748 
0.025198 

0.031748 
0.04 

0.01 
0.031748 
0.011696 
0.011696 

0 

0 

0 

0 

0 

0 

0.003 
0.003 
0.001 

0.5 

Iteolution 

1   1 

49x49 
257x257 
257x257 
257x257 
257x257 
257x257 
257x257 

257x257 
257x257 

257x257 

257x257 

257x257 
257x257 
257x257 
257x257 

257x257 
257x257 
257x257 
257x257 
257x257 
257x257 
257x257 

257x257 
129x65 
65x129 
257x257 
257x257 
257x257 

At 
0.25 
0.05 
0.06 
0.03 
0.025 
0.03 
0.03 

0.02 

0.025 

0.01 

0.01 

0.015 
0.02 
0.015 
0.02 

0.01 
0.01 
0.01 
0.01 
0.01 
0.008 
0.008 

0.008 
0.0125 
0.1 
0.02 

0.01 

max(t) 

500 
15000 
2000 
5000 
10000 
20000 

25000 

25000 
10000 

20000 

30000 

20000 
10000 
10000 
10000 

20000 
15000 
20000 
10000 
10000 
15000 
15000 

15000 
2500 
5000 
5000 
5000 

0.02  5000 

Tab e C.l: This table pr^ents the parameter setting for many of the time-dependent 
no-slip, smgle-gyre calculations presented in this dissertation. 
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0.00 

0.00 0.20 0.40 0.60 0.80 1.00 

Figure C-2: Superposition of contour plots of the Re(bdy)=0.25, Re(int)=7 
calculation with no-slip boundary conditions. Resolutions are 200x200 (soUd), 
256x256(dashed), and 300x300(dotted) with dt=0.008, 0.01, 0.015 respectively. 
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Figure C-3: Superposition of contour plots of the Re(bdy)=0.25, Re(mt)=5 calcu- 
lation with no-slip boundary conditions. The sohd contours are the average of the 
streamfunction from time 10000 to 20000 and the dashed contours are the average 
from 20000 to 30000. ^ 
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120^ 
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0       4000      8000     12000 16000     20000     24000     28000 

Figure C-4: Total kinetic energy of the ncnsHp, Re(bdy)=0.25, Re(int)=5 calculati on. 
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Location (Fig.) SI 5M {io-t) SMihdj) Ss Ly L, Resolution At max(t) 
3-27, 3-28 

3-29 
0.02 0.043089 0.014736 0 1 1 129x129 0.05 10000 

3-27, 3-28 
3-29,4^19 

U.U2 0.014736 0.014736 0 1 1 65x65 0.0004 100000 

None U.02 0.043089 0.014736 0 1.56 1 257x129 0.03 5000 
4-19, 4-13 0.U2 0.014736 0.014736 0 1.56 1 257x129 0.01 5000 
None 0.02 0.043089 0.014736 0 2 1 257x129 0.03 10000 

4-19, 4-10 0.02 0.014736 0.014736 0 2 1 257x129 0.01 5000 
4rl4 0.02 0.011696 0.011696 0 1.56 1 257x129 0.01 8000 
4-40 0.02 0.031748 0.011696 0 2 1 257x129 0.01 5000 
4-12 0.02 0.031748 0.011696 0 2 1 301x151 0.005 5000 
4-15 0.02 0.009283 0.009283 0 1.56 1 401x257 0.005 3620 

Table C.2: This table presents the parameter setting for many of the time-dependent 
slip calculations presented in this dissertation. 

Location (Fig.) SI ^AfCiat) SMihdy) Ss Ly L, Resolution At max(t) 
4-4,4-23 
4-2, 4.7, 

4-22 

0.02 
0.02 

0.011696 
0.011696 

0.031748 
0.011696 

0 
0 

1.56 
1.56 

513x257 
513x257 

0.02 
0.02 

6000 
6000 

4-4, 4-23 
4-2, 4-8, 
4-22 

0.U2 
0.02 

0.011696 
0.011696 

0.031748 
0.011696 

0 
0 

2 
2 

513x257 
513x257 

0.005 
0.005 

6000 
6000 

4-31, 4-32 0.02 0.011696 0.011696 0 2 513x257 0.02 9500 
4-37 0.06 0.0205197 0.0205197 0 1.56 301x151 0.004 5000 
4-37 U.06 0.095244 0.0205197 0 1.56 257x129 0.003 5000 

Table C.3: This table pr^ents the parameter settinp for many of the time-dependent 
no-slip, double- and two-gyre calculations presented in this di^ertation. 
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